384 research outputs found

    The antenna DSA 3 and its potential use for Radio Astronomy

    Get PDF
    The European Space Agency (ESA) will inaugurate its third Deep Space Antenna (DSA 3) by the end of 2012. DSA 3 will be located in Argentina near the city of Malarg"ue in the Mendoza province. While the instrument will be primarily dedicated to communications with interplanetary missions, the characteristics of its antenna and receivers will also enable standalone leading scientific contributions, with a high scientific-technological return. We outline here scientific proposals for a radio astronomical use of DSA 3.Comment: 4 pages, submitted as Proceedings for the BAA

    Microcavity phonoritons -- a coherent optical-to-microwave interface

    Full text link
    Optomechanical systems provide a pathway for the bidirectional optical-to-microwave interconversion in (quantum) networks. We demonstrate the implementation of this functionality and non-adiabatic optomechanical control in a single, μ\mum-sized potential trap for phonons and exciton-polariton condensates in a structured semiconductor microcavity. The exciton-enhanced optomechanical coupling leads to self-oscillations (phonon lasing) -- thus proving reversible photon-to-phonon conversion. We show that these oscillations are a signature of the optomechanical strong coupling signalizing the emergence of elusive phonon-exciton-photon quasiparticles -- the phonoritons. We then demonstrate full control of the phonoriton spectrum as well as coherent microwave-to-photon interconversion using electrically generated GHz-vibrations and a resonant optical laser beam. These findings establish the zero-dimensional polariton condensates as a scalable coherent interface between microwave and optical domains with enhanced microwave-to-mechanical and mechanical-to-optical coupling rates

    Cosmic Ray Acceleration at the Forward Shock in Tycho's Supernova Remnant: Evidence from Chandra X-ray Observations

    Get PDF
    We present evidence for cosmic ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamical models of SNR evolution. The CD:BW ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Ka emission from the Tycho ejecta, imply that the RS is not accelerating cosmic rays. We also extract radial profiles from ~34% of the rim of Tycho and compare them to models of surface brightness profiles behind the BW for a purely thermal plasma with an adiabatic shock. The observed morphology of the rim is much more strongly peaked than predicted by the model, indicating that such thermal emission is implausible here. Spectral analysis also implies that the rim emission is non-thermal in nature, lending further support to the idea that Tycho's forward shock is accelerating cosmic rays.Comment: 39 pages, 10 figures, accepted by Ap

    Deep optical observations of the central X-ray source in the Puppis A supernova remnant

    Full text link
    X-ray observations reveiled a group of radio-silent isolated neutron stars (INSs) at the centre of young supernova remnants (SNRs), dubbed central compact objects or CCOs, with properties different from those of classical rotation-powered pulsars. In at least three cases, evidence points towards CCOs being low-magnetized INSs, born with slow rotation periods, and possibly accreting from a debris disc of material formed out of the supernova event. Understanding the origin of the diversity of the CCOs can shed light on supernova explosion and neutron star formation models. Optical/infrared (IR) observations are crucial to test different CCO interpretations. The aim of our work is to perform a deep optical investigation of the CCO RX J0822.0-4300 in the Puppis A SNR, one of the most poorly understood in the CCO family. By using as a reference the Chandra X-ray coordinates of RX J0822.0-4300, we performed deep optical observations in the B, V and I bands with the Very Large Telescope (VLT). We found no candidate optical counterpart within 3 sigma of the computed Chandra X-ray position down to 5 sigma limits of B~27.2, V~26.9, and I~25.6, the deepest obtained in the optical band for this source. These limits confirm the non-detection of a companion brighter than an M5 dwarf. At the same time, they do not constrain optical emission from the neutron star surface, while emission from the magnetosphere would require a spectral break in the optical/IR.Comment: 4 pages, 2 figures, Astronomy and Astrophysics, accepte

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio

    Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos

    Full text link
    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth's interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.Comment: 22 pages, 9 figures. Proceedings of ``Neutrino sciences 2005: Neutrino geophysics'', December 14-16, 2005, Honolulu, USA. Minor changes, some references added. Final version to appear in Earth, Moon, and Planet

    A valley-spin qubit in a carbon nanotube

    Full text link
    Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, a major challenge is the unavoidable hyperfine decoherence in these materials. In group IV semiconductors, the dominant nuclear species are spinless, allowing for qubit coherence times that have been extended up to seconds in diamond and silicon. Carbon nanotubes are a particularly attractive host material, because the spin-orbit interaction with the valley degree of freedom allows for electrical manipulation of the qubit. In this work, we realise such a qubit in a nanotube double quantum dot. The qubit is encoded in two valley-spin states, with coherent manipulation via electrically driven spin resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by measuring the current in Pauli blockade. Arbitrary qubit rotations are demonstrated, and the coherence time is measured via Hahn echo. Although the measured decoherence time is only 65 ns in our current device, this work offers the possibility of creating a qubit for which hyperfine interaction can be virtually eliminated

    VLT observations of the Central Compact Object in the Vela Jr. supernova remnant

    Full text link
    X-ray observations have unveiled the existence of enigmatic point-like sources at the center of young (a few kyrs) supernova remnants. These sources, known as Central Compact Objects (CCOs), are thought to be neutron stars produced by the supernova explosion, although their X-ray phenomenology makes them markedly different from all the other young neutron stars discovered so far.The aim of this work is to search for the optical/IR counterpart of the Vela Junior CCO and to understand the nature of the associated Halpha nebula discovered by Pellizzoni et al. (2002).}{We have used deep optical (R band) and IR (J,H,Ks bands) observations recently performed by our group with the ESO VLT to obtain the first deep, high resolution images of the field with the goal of resolving the nebula structure and pinpointing a point-like source possibly associated with the neutron star.Our R-band image shows that both the nebula's flux and its structure are very similar to the Halpha ones, suggesting that the nebula spectrum is dominated by pure Halpha line emission. However, the nebula is not detected in our IR observations, whick makes it impossible to to constrain its spectrum. A faint point-like object (J>22.6, H~21.6, Ks ~ 21.4) compatible with the neutron star's Chandra X-ray position is detected in our IR images (H and Ks) but not in the optical one (R > 25.6), where it is buried by the nebula background. The nebula is most likely a bow-shock produced by the neutron star motion through the ISM or, alternatively, a photo-ionization nebula powered by UV radiation from a hot neutron star.Comment: 8 pages, 4 figures, A&Aaccepte

    Optomechanical parametric oscillation of a quantum light-fluid lattice

    Get PDF
    Two-photon coherent states are one of the main building pillars of nonlinear and quantum optics. They are the basis for the generation of minimum-uncertainty quantum states and entangled photon pairs, applications not obtainable from standard coherent states or one-photon lasers. Here, we describe a fully resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes. The quadratic coupling derives from nonresonant virtual transitions to extended discrete excited states induced by the optomechanical coupling. Nonresonant continuous-wave laser excitation leads to striking experimental consequences, including the emergence of optomechanically induced intersite parametric oscillations and intersite tunneling of polaritons at discrete intertrap detunings corresponding to sums of energies of the two involved mechanical oscillations (20- and 60-GHz confined vibrations). We show that the coherent mechanical oscillations correspond to parametric resonances with a threshold condition different from that of standard linear optomechanical self-oscillation. The associated Arnold tongues display a complex scenario of states within the instability region. The observed phenomena can have applications for the generation of entangled phonon pairs and squeezed mechanical states relevant in sensing and quantum computation and for the bidirectional frequency conversion of signals in a technologically relevant range.Fil: Reynoso, Andres Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Usaj, Gonzalo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Chafatinos, Dimitri Lisandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Mangussi, Franco. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Kuznetsov, A. S.. Paul-drude-institut Für Festkörperelektronik; AlemaniaFil: Biermann, K.. Paul-drude-institut Für Festkörperelektronik; AlemaniaFil: Santos, P. V.. Paul-drude-institut Für Festkörperelektronik; AlemaniaFil: Fainstein, Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentin

    Hubble Space Telescope WFPC-2 Imaging of Cassiopeia A

    Get PDF
    The young SNR Cassiopeia A was imaged with WFPC-2 through four filters selected to capture the complete velocity range of the remnant's main shell in several important emission lines. Primary lines detected were [O III] 4959,5007, [N II] 6583, [S II] 6716,6731 + [O II] 7319,7330 + [O I] 6300,6364, and [S III] 9069,9532. About 3/4th of the remnant's main shell was imaged in all four filters. Considerable detail is observed in the reverse-shocked ejecta with typical knot scale lengths of 0.2"-0.4" (1 - 2 x 10^16 cm). Both bright and faint emission features appear highly clumped. Large differences in [S III] and [O III] line intensities indicating chemical abundance differences are also seen, particularly in knots located along the bright northern limb and near the base of the northeast jet. A line of curved overlapping filament in the remnant's northwestern rim appears to mark the location of the remnant's reverse shock front in this region. Finger-like ejecta structures elsewhere suggest cases where the reverse shock front is encountering the remnant's clumped ejecta. Narrow-band [N II] images of the remnant's circumstellar knots ("QSFs") reveal them to be 0.1"-0.6" thick knots and filaments, often with diffuse edges facing away from the center of expansion. Three color composite images of the whole remnant and certain sections along with individual filter enlargements of selected regions of the bright optical shell are presented and discussed.Comment: 26 pages, 12 figures Accepted to the Astronomical Journa
    corecore