300 research outputs found

    Computational simulation of matrix micro-slip bands in SiC/Ti-15 composite

    Get PDF
    Computational simulation procedures are used to identify the key deformation mechanisms for (0)(sub 8) and (90)(sub 8) SiC/Ti-15 metal matrix composites. The computational simulation procedures employed consist of a three-dimensional finite-element analysis and a micromechanics based computer code METCAN. The interphase properties used in the analysis have been calibrated using the METCAN computer code with the (90)(sub 8) experimental stress-strain curve. Results of simulation show that although shear stresses are sufficiently high to cause the formation of some slip bands in the matrix concentrated mostly near the fibers, the nonlinearity in the composite stress-strain curve in the case of (90)(sub 8) composite is dominated by interfacial damage, such as microcracks and debonding rather than microplasticity. The stress-strain curve for (0)(sub 8) composite is largely controlled by the fibers and shows only slight nonlinearity at higher strain levels that could be the result of matrix microplasticity

    Laser Raman and Infrared Spectra of Some Uracil Derivatives

    Get PDF

    Vibrational Spectra of Isomeric Aminobenzonitriles

    Get PDF

    Telescoping Composite Mechanics for Composite Behavior Simulation

    Get PDF
    SUMMARY: Telescoping composite mechanics are described and implemented in terms of recursive laminate theory. The initial elemental scale is defined where simple equations are derived. Subsequently these mechanics are applied to homogeneous composites, composite structural components and hybrid composites. Results from those applications are presented in terms of tables/figures to illustrate the versatility and generality of telescoping composite mechanics. Comparisons with methods such as approximate, single cell, and 2-D and 3-D finite element demonstrate the predictive accuracy and computational effectiveness of composite telescoping mechanics

    A randomized phase 2 study of trastuzumab and pertuzumab (TP) compared to cetuximab and irinotecan (CETIRI) in advanced/metastatic colorectal cancer (mCRC) with HER2 amplification: SWOG S1613

    Get PDF
    Background: HER2 (ERBB2) over-expression and amplification (HER2+) is seen in a small but distinct subset (2-3%) of mCRC and is enriched in RAS/BRAF wild type (WT) tumors. This subset is characterized by a limited response to anti-epidermal growth factor receptor monoclonal antibodybased (anti-EGFR) therapy and a promising response to dual-HER2 inhibition. Methods: In this multicenter, open label, randomized, phase 2 trial, we enrolled 54 patients with RAS/BRAF WT HER2+ mCRC who had had disease progression after 1 or 2 previous therapies. HER2 status was confirmed centrally with immunohistochemistry (IHC) and in-situ hybridization (ISH). HER2+ was defined as IHC 3+ or 2+ and ISH amplified (dual-probe HER2/CEP17 ratio \u3e 2.0). Patients were then randomly assigned in a 1:1 ratio to receive either TP (trastuzumab [loading 8 mg/kg then 6 mg/kg] + pertuzumab [loading 840 mg then 420 mg] every 3 weeks) or CETIRI (cetuximab 500 mg/m2 + irinotecan 180 mg/m2 every 2 weeks). Crossover was allowed for patients on CETIRI arm to TP (cTP) after progression. Restaging (per RECIST v1.1) was performed at 6 and 12 weeks and then every 8 weeks until progression. The primary endpoint was progression-free survival (PFS). Key secondary endpoints were overall response rate (ORR), overall survival (OS) and safety. Results: A total of 54 (out of planned 62 due to low accrual) patients were randomized to TP (26) and CETIRI (28) between 10/2017 and 12/2021. By 8/18/2022, 20 patients had crossed over to cTP arm. One CETIRI patient was not analyzable. The results for key endpoints by protocol defined stratification factors, prior irinotecan (Piri) (yes or no) and HER2/CEP17 ratio (HCR) (\u3e5 or ≤5), are summarized as of data cut-off of 9/6/2022. PFS did not vary significantly by treatment: medians 4.4 (95%CI: 1.9 - 7.6) months in TP group and 3.7 (95%CI: 1.6 - 6.7) months in CETIRI group (p = 0.35). Grade≥3 adverse events occurred in 23%, 46% and 40% of patients in TP, CETIRI and cTP groups. Conclusions: Dual-HER2 inhibition with TP appears to be a safe and effective treatment option for patients with RAS/BRAF WT HER2+ mCRC with a promising response rate of31%.Higher level of HER2 amplification may provide a greater degree of clinical benefit from TP compared to CETIRI. Future correlative efforts will explore biomarkers of response/resistance with this strategy

    A call for using natural compounds in the development of new antimalarial treatments – an introduction

    Get PDF
    Natural compounds, mostly from plants, have been the mainstay of traditional medicine for thousands of years. They have also been the source of lead compounds for modern medicine, but the extent of mining of natural compounds for such leads decreased during the second half of the 20th century. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors. Natural compounds have provided the best anti-malarials known to date. Recent surveys have identified many extracts of various organisms (mostly plants) as having antiplasmodial activity. Huge libraries of fractionated natural compounds have been screened with impressive hit rates. Importantly, many cases are known where the crude biological extract is more efficient pharmacologically than the most active purified compound from this extract. This could be due to synergism with other compounds present in the extract, that as such have no pharmacological activity. Indeed, such compounds are best screened by cell-based assay where all potential targets in the cell are probed and possible synergies identified. Traditional medicine uses crude extracts. These have often been shown to provide many concoctions that deal better with the overall disease condition than with the causative agent itself. Traditional medicines are used by ~80 % of Africans as a first response to ailment. Many of the traditional medicines have demonstrable anti-plasmodial activities. It is suggested that rigorous evaluation of traditional medicines involving controlled clinical trials in parallel with agronomical development for more reproducible levels of active compounds could improve the availability of drugs at an acceptable cost and a source of income in malaria endemic countries

    Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite

    Get PDF
    Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1). Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA). Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion

    Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites

    Get PDF
    The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth

    RON5 is critical for organization and function of the Toxoplasma moving junction complex

    Get PDF
    Apicomplexans facilitate host cell invasion through formation of a tight-junction interface between parasite and host plasma membranes called the moving junction (MJ). A complex of the rhoptry neck proteins RONs 2/4/5/8 localize to the MJ during invasion where they are believed to provide a stable anchoring point for host penetration. During the initiation of invasion, the preformed MJ RON complex is injected into the host cell where RON2 spans the host plasma membrane while RONs 4/5/8 localize to its cytosolic face. While much attention has been directed toward an AMA1-RON2 interaction supposed to occur outside the cell, little is known about the functions of the MJ RONs positioned inside the host cell. Here we provide a detailed analysis of RON5 to resolve outstanding questions about MJ complex organization, assembly and function during invasion. Using a conditional knockdown approach, we show loss of RON5 results in complete degradation of RON2 and mistargeting of RON4 within the parasite secretory pathway, demonstrating that RON5 plays a key role in organization of the MJ RON complex. While RON8 is unaffected by knockdown of RON5, these parasites are unable to invade new host cells, providing the first genetic demonstration that RON5 plays a critical role in host cell penetration. Although invasion is not required for injection of rhoptry effectors into the host cytosol, parasites lacking RON5 also fail to form evacuoles suggesting an intact MJ complex is a prerequisite for secretion of rhoptry bulb contents. Additionally, while the MJ has been suggested to function in egress, disruption of the MJ complex by RON5 depletion does not impact this process. Finally, functional complementation of our conditional RON5 mutant reveals that while proteolytic separation of RON5 N- and C-terminal fragments is dispensable, a portion of the C-terminal domain is critical for RON2 stability and function in invasion
    corecore