1,920 research outputs found

    Peer Rejection and Friendships in Children with Attention-Deficit/Hyperactivity Disorder: Contributions to Long-Term Outcomes

    Get PDF
    Even after evidence-based treatment, Attention- Deficit/Hyperactivity Disorder (ADHD) is associated with poor long-term outcomes. These outcomes may be partly explained by difficulties in peer functioning, which are common among children with ADHD and which do not respond optimally to standard ADHD treatments. We examined whether peer rejection and lack of dyadic friendships experienced by children with ADHD after treatment contribute to long-term emotional and behavioral problems and global impairment, and whether having a reciprocal friend buffers the negative effects of peer rejection. Children with Combined type ADHD (N0300) enrolled in the Multimodal Treatment Study of Children with ADHD (MTA) were followed for 8 years. Peer rejection and dyadic friendships were measured with sociometric assessments after the active treatment period (14 or 24 months after baseline; M ages 9.7 and 10.5 years, respectively). Outcomes included delinquency, depression, anxiety, substance use, and general impairment at 6 and 8 years after baseline (Mean ages 14.9 and 16.8 years, respectively). With inclusion of key covariates, including demographics, symptoms ofADHD, ODD, and CD, and level of the outcome variable at 24 months, peer rejection predicted cigarette smoking, delinquency, anxiety, and global impairment at 6 years and global impairment at 8 years after baseline. Having a reciprocal friend was not, however, uniquely predictive of any outcomes and did not reduce the negative effects of peer rejection. Evaluating and addressing peer rejection in treatment planning may be necessary to improve long-term outcomes in children with ADHD

    Hot pixel contamination in the CMB correlation function?

    Full text link
    Recently, it was suggested that the map-making procedure, which is applied to the time-ordered CMB data by the WMAP team, might be flawed by hot pixels. This could lead to a bias in the pixels having an angular distance of about 141 degrees from hot pixels due to the differential measuring process of the satellite WMAP. Here, the bias is confirmed, and the temperature two-point correlation function C(theta) is reevaluated by excluding the affected pixels. It is shown that the most significant effect occurs in C(theta) at the largest angles near theta = 180 degrees. Furthermore, the corrected correlation function C(theta) is applied to the cubic topology of the Universe, and it is found that such a multi-connected universe matches the temperature correlation better than the LCDM concordance model, provided the cubic length scale is close to L=4 measured in units of the Hubble length

    Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP's uncalibrated time ordered data than the official sky maps

    Get PDF
    The purpose of this reanalysis of the WMAP uncalibrated time ordered data (TOD) was two fold. The first was to reassess the reliability of the detection of the anisotropies in the official WMAP sky maps of the cosmic microwave background (CMB). The second was to assess the performance of a proposed criterion in avoiding systematic error in detecting a signal of interest. The criterion was implemented by testing the null hypothesis that the uncalibrated TOD was consistent with no anisotropies when WMAP's hourly calibration parameters were allowed to vary. It was shown independently for all 20 WMAP channels that sky maps with no anisotropies were a better fit to the TOD than those from the official analysis. The recently launched Planck satellite should help sort out this perplexing result.Comment: 11 pages with 1 figure and 2 tables. Extensively rewritten to explain the research bette

    Rigid Chiral Membranes

    Get PDF
    Statistical ensembles of flexible two-dimensional fluid membranes arise naturally in the description of many physical systems. Typically one encounters such systems in a regime of low tension but high stiffness against bending, which is just the opposite of the regime described by the Polyakov string. We study a class of couplings between membrane shape and in-plane order which break 3-space parity invariance. Remarkably there is only {\it one} such allowed coupling (up to boundary terms); this term will be present for any lipid bilayer composed of tilted chiral molecules. We calculate the renormalization-group behavior of this relevant coupling in a simplified model and show how thermal fluctuations effectively reduce it in the infrared.Comment: 11 pages, UPR-518T (This replaced version has fonts not used removed.

    Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes

    Full text link
    We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the curvature. Helical ribbons can be stable structures, or they can be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and epsf.st

    How well-proportioned are lens and prism spaces?

    Full text link
    The CMB anisotropies in spherical 3-spaces with a non-trivial topology are analysed with a focus on lens and prism shaped fundamental cells. The conjecture is tested that well proportioned spaces lead to a suppression of large-scale anisotropies according to the observed cosmic microwave background (CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly proportioned. However, there are inhomogeneous lens spaces whose shape of the Voronoi domain depends on the position of the observer within the manifold. Such manifolds possess no fixed measure of well-proportioned and allow a predestined test of the well-proportioned conjecture. Topologies having the same Voronoi domain are shown to possess distinct CMB statistics which thus provide a counter-example to the well-proportioned conjecture. The CMB properties are analysed in terms of cyclic subgroups Z_p, and new point of view for the superior behaviour of the Poincar\'e dodecahedron is found

    The number counts, luminosity functions and evolution of microwave-selected (WMAP) blazars and radio galaxies

    Full text link
    (Abridged) We carried out an extensive search to identify the counterparts of all the sources listed in the WMAP 3-yr catalogue using literature and archival data. Our work led to the identification of 309 WMAP sources, 98% of which are blazars, radio quasars or radio galaxies. At present, 15 objects still remain without identification due to the lack of optical spectroscopic data or a clear radio counterpart. Our results allow us to define a flux limited sample of 203 high Galactic latitude microwave sources (f41GHz1f_{41GHz} \ge 1 Jy, bII>15|b_{\rm II}| > 15^\circ) which is virtually completely identified (99%). The microwave band is ideally suited for blazar statistical studies since this is the part of the em spectrum that is least affected by the superposition of spectral components of different origin. Using this data-set we derived number counts, luminosity functions and cosmological evolution of blazars and radio galaxies at microwave frequencies. Our results are in good agreement with those found at radio frequencies. The 5 GHz bivariate blazar luminosity functions are similar to those derived from the DXRBS survey, which shows that this sample is representative of the blazar population at 41 GHz. Microwave selected broad- lined quasars are about 6 times more abundant than BL Lacs, a ratio that is similar to, or larger than, that seen at radio and gamma-ray frequencies, once spectral selection effects are taken into account. This strongly suggests that the mechanism responsible for the generation of gamma-rays is, at first order, the same in all blazar types. Our results confirm the findings of Giommi & Colafrancesco (2004, 2006) that blazars and radio galaxies are the largest contaminants of the CMB anisotropy maps. We predict that these sources are also bright gamma-ray sources, most of which will be detected by AGILE and FERMI.Comment: 18 pages, 11 figures, 3 tables. A&A in pres

    Best Unbiased Estimates for the Microwave Background Anisotropies

    Get PDF
    It is likely that the observed distribution of the microwave background temperature over the sky is only one realization of the underlying random process associated with cosmological perturbations of quantum-mechanical origin. If so, one needs to derive the parameters of the random process, as accurately as possible, from the data of a single map. These parameters are of the utmost importance, since our knowledge of them would help us to reconstruct the dynamical evolution of the very early Universe. It appears that the lack of ergodicity of a random process on a 2-sphere does not allow us to do this with arbitrarily high accuracy. We are left with the problem of finding the best unbiased estimators of the participating parameters. A detailed solution to this problem is presented in this article. The theoretical error bars for the best unbiased estimates are derived and discussed.Comment: 26 pages, revtex; minor modifications, 8 new references, to be published in Phys. Rev.

    Cosmic microwave anisotropies in an inhomogeneous compact flat universe

    Full text link
    The anisotropies of the cosmic microwave background (CMB) are computed for the half-turn space E_2 which represents a compact flat model of the Universe, i.e. one with finite volume. This model is inhomogeneous in the sense that the statistical properties of the CMB depend on the position of the observer within the fundamental cell. It is shown that the half-turn space describes the observed CMB anisotropies on large scales better than the concordance model with infinite volume. For most observer positions it matches the temperature correlation function even slightly better than the well studied 3-torus topology

    Astrophysical and Cosmological Tests of Quantum Theory

    Get PDF
    We discuss several proposals for astrophysical and cosmological tests of quantum theory. The tests are motivated by deterministic hidden-variables theories, and in particular by the view that quantum physics is merely an effective theory of an equilibrium state. The proposed tests involve searching for nonequilibrium violations of quantum theory in: primordial inflaton fluctuations imprinted on the cosmic microwave background, relic cosmological particles, Hawking radiation, photons with entangled partners inside black holes, neutrino oscillations, and particles from very distant sources.Comment: 25 pages. Amendment to section 7. Contribution to: "The Quantum Universe", special issue of Journal of Physics A, dedicated to Prof. G.-C. Ghirardi on the occasion of his seventieth birthda
    corecore