2,114 research outputs found

    Spectral and spatial observations of microwave spikes and zebra structure in the short radio burst of May 29, 2003

    Full text link
    The unusual radio burst of May 29, 2003 connected with the M1.5 flare in AR 10368 has been analyzed. It was observed by the Solar Broadband Radio Spectrometer (SBRS/Huairou station, Beijing) in the 5.2-7.6 GHz range. It proved to be only the third case of a neat zebra structure appearing among all observations at such high frequencies. Despite the short duration of the burst (25 s), it provided a wealth of data for studying the superfine structure with millisecond resolution (5 ms). We localize the site of emission sources in the flare region, estimate plasma parameters in the generation sites, and suggest applicable mechanisms for interpretating spikes and zebra-structure generation. Positions of radio bursts were obtained by the Siberian Solar Radio Telescope (SSRT) (5.7 GHz) and Nobeyama radioheliograph (NoRH) (17 GHz). The sources in intensity gravitated to tops of short loops at 17 GHz, and to long loops at 5.7 GHz. Short pulses at 17 GHz (with a temporal resolution of 100 ms) are registered in the R-polarized source over the N-magnetic polarity (extraordinary mode). Dynamic spectra show that all the emission comprised millisecond pulses (spikes) of 5-10 ms duration in the instantaneous band of 70 to 100 MHz, forming the superfine structure of different bursts, essentially in the form of fast or slow-drift fibers and various zebra-structure stripes. Five scales of zebra structures have been singled out. As the main mechanism for generating spikes (as the initial emission) we suggest the coalescence of plasma waves with whistlers in the pulse regime of interaction between whistlers and ion-sound waves. In this case one can explain the appearance of fibers and sporadic zebra-structure stripes exhibiting the frequency splitting.Comment: 11 pages, 5 figures, in press; A&A 201

    Billiards with polynomial mixing rates

    Full text link
    While many dynamical systems of mechanical origin, in particular billiards, are strongly chaotic -- enjoy exponential mixing, the rates of mixing in many other models are slow (algebraic, or polynomial). The dynamics in the latter are intermittent between regular and chaotic, which makes them particularly interesting in physical studies. However, mathematical methods for the analysis of systems with slow mixing rates were developed just recently and are still difficult to apply to realistic models. Here we reduce those methods to a practical scheme that allows us to obtain a nearly optimal bound on mixing rates. We demonstrate how the method works by applying it to several classes of chaotic billiards with slow mixing as well as discuss a few examples where the method, in its present form, fails.Comment: 39pages, 11 figue

    Deterministic Weak Localization in Periodic Structures

    Full text link
    The weak localization is found for perfect periodic structures exhibiting deterministic classical diffusion. In particular, the velocity autocorrelation function develops a universal quantum power law decay at 4 times Ehrenfest time, following the classical stretched-exponential type decay. Such deterministic weak localization is robust against weak enough randomness (e.g., quantum impurities). In the 1D and 2D cases, we argue that at the quantum limit states localized in the Bravis cell are turned into Bloch states by quantum tunnelling.Comment: 5 pages, 2 figure

    Beam propagation in a Randomly Inhomogeneous Medium

    Full text link
    An integro-differential equation describing the angular distribution of beams is analyzed for a medium with random inhomogeneities. Beams are trapped because inhomogeneities give rise to wave localization at random locations and random times. The expressions obtained for the mean square deviation from the initial direction of beam propagation generalize the "3/2 law".Comment: 4 page

    Upgrading the Local Ergodic Theorem for planar semi-dispersing billiards

    Full text link
    The Local Ergodic Theorem (also known as the `Fundamental Theorem') gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However the proof of that theorem relies upon a delicate assumption (Chernov-Sinai Ansatz), which is difficult to check for some physically relevant models, including gases of hard balls. Here we give a proof of the Local Ergodic Theorem for two dimensional billiards without using the Ansatz.Comment: 17 pages, 2 figure

    Langevin equation for the extended Rayleigh model with an asymmetric bath

    Full text link
    In this paper a one-dimensional model of two infinite gases separated by a movable heavy piston is considered. The non-linear Langevin equation for the motion of the piston is derived from first principles for the case when the thermodynamic parameters and/or the molecular masses of gas particles on left and right sides of the piston are different. Microscopic expressions involving time correlation functions of the force between bath particles and the piston are obtained for all parameters appearing in the non-linear Langevin equation. It is demonstrated that the equation has stationary solutions corresponding to directional fluctuation-induced drift in the absence of systematic forces. In the case of ideal gases interacting with the piston via a quadratic repulsive potential, the model is exactly solvable and explicit expressions for the kinetic coefficients in the non-linear Langevin equation are derived. The transient solution of the non-linear Langevin equation is analyzed perturbatively and it is demonstrated that previously obtained results for systems with the hard-wall interaction are recovered.Comment: 10 pages. To appear in Phys. Rev.

    Devroye Inequality for a Class of Non-Uniformly Hyperbolic Dynamical Systems

    Full text link
    In this paper, we prove an inequality, which we call "Devroye inequality", for a large class of non-uniformly hyperbolic dynamical systems (M,f). This class, introduced by L.-S. Young, includes families of piece-wise hyperbolic maps (Lozi-like maps), scattering billiards (e.g., planar Lorentz gas), unimodal and H{\'e}non-like maps. Devroye inequality provides an upper bound for the variance of observables of the form K(x,f(x),...,f^{n-1}(x)), where K is any separately Holder continuous function of n variables. In particular, we can deal with observables which are not Birkhoff averages. We will show in \cite{CCS} some applications of Devroye inequality to statistical properties of this class of dynamical systems.Comment: Corrected version; To appear in Nonlinearit
    • …
    corecore