6,767 research outputs found

    Axions and SN1987A

    Get PDF
    The effect of free-streaming axion emission on numerical models for the cooling of the newly born neutron star associated with SN1987A is considered. It is found that for an axion mass of greater than approximately 10 to the -3 eV, axion emission shortens the duration of the expected neutrino burst so significantly that it would be inconsistent with the neutrino observations made by the Kamiokande II and Irvine-Michigan-Brookhaven detectors. However, the possibility has not been investigated that axion trapping (which should occur for masses greater than or equal to 0.02 eV) sufficiently reduces axion emission so that axion masses greater than approximately 2 eV would be consistent with the neutrino observations

    QCD: Challenges for the Future

    Get PDF
    Despite many experimental verifications of the correctness of our basic understanding of QCD, there remain numerous open questions in strong interaction physics and we focus on the role of future colliders in addressing these questions. We discuss possible advances in the measurement of αs\alpha_s, in the study of parton distribution functions, and in the understanding of low xx physics at present colliders and potential new facilities. We also touch briefly on the role of spin physics in advancing our understanding of QCD.Comment: 12 pages, LATEX2e with snow2e, epsfig and 2 figures. Also available at http://penguin.phy.bnl.gov/~dawson/qcdsnow.ps . QCD working group summary at DPF/DPB Summer Study on New Directions for High Energy Physics, Snowmass, CO, June 25- July 12, 199

    Shear horizontal (SH) ultrasound wave propagation around smooth corners

    Get PDF
    Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83 mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence

    z'-band Ground-Based Detection of the Secondary Eclipse of WASP-19b

    Get PDF
    We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z'-band using the ULTRACAM triple-beam CCD camera mounted on the NTT. The measurement shows a 0.088\pm0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse centre, T0, of 2455578.7676 HJD, consistent with a circular orbit. Our measurement of the secondary eclipse depth is also compared to model atmospheres of WASP-19b, and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.Comment: 20 pages, 10 figures. Published in the ApJ Supplement serie

    GRB Energetics in the Swift Era

    Full text link
    We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known redshift that were detected by the Swift spacecraft and monitored by the satellite's X-ray Telescope (XRT). Using the bolometric fluence values estimated in Butler et al. 2007b and the last XRT observation for each event, we set a lower limit the their collimation corrected energy Eg and find that a 68% of our sample are at high enough redshift and/or low enough fluence to accommodate a jet break occurring beyond the last XRT observation and still be consistent with the pre-Swift Eg distribution for long GRBs. We find that relatively few of the X-ray light curves for the remaining events show evidence for late-time decay slopes that are consistent with that expected from post jet break emission. The breaks in the X-ray light curves that do exist tend to be shallower and occur earlier than the breaks previously observed in optical light curves, yielding a Eg distribution that is far lower than the pre-Swift distribution. If these early X-ray breaks are not due to jet effects, then a small but significant fraction of our sample have lower limits to their collimation corrected energy that place them well above the pre-Swift Eg distribution. Either scenario would necessitate a much wider post-Swift Eg distribution for long cosmological GRBs compared to the narrow standard energy deduced from pre-Swift observations. We note that almost all of the pre-Swift Eg estimates come from jet breaks detected in the optical whereas our sample is limited entirely to X-ray wavelengths, furthering the suggestion that the assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap

    Ab initio Folding Potentials for Nucleon-Nucleus Scattering based on NCSM One-Body Densities

    Get PDF
    Calculating microscopic optical potentials for elastic nucleon-nucleus scattering has already led to large body of work in the past. For folding first-order calculations the nucleon-nucleon (NN) interaction and the one-body density of the nucleus were taken as input to rigorous calculations in a spectator expansion of the multiple scattering series. Based on the Watson expansion of the multiple scattering series we employ a nonlocal translationally invariant nuclear density derived from a chiral next-to-next-to-leading order (NNLO) and the very same interaction for consistent full-folding calculation of the effective (optical) potential for nucleon-nucleus scattering for light nuclei. We calculate scattering observables, such as total, reaction, and differential cross sections as well as the analyzing power and the spin-rotation parameter, for elastic scattering of protons and neutrons from 4^4He, 6^{6}He, 12^{12}C, and 16^{16}O, in the energy regime between 100 and 200~MeV projectile kinetic energy, and compare to available data. Our calculations show that the effective nucleon-nucleus potential obtained from the first-order term in the spectator expansion of the multiple scattering expansion describes experiments very well to about 60 degrees in the center-of-mass frame, which coincides roughly with the validity of the NNLO chiral interaction used to calculate both the NN amplitudes and the one-body nuclear density.Comment: 10 pages, 14 figures, 1 tabl

    Many-Body Corrections to Charged-Current Neutrino Absorption Rates in Nuclear Matter

    Get PDF
    Including nucleon--nucleon correlations due to both Fermi statistics and nuclear forces, we have developed a general formalism for calculating the charged--current neutrino--nucleon absorption rates in nuclear matter. We find that at one half nuclear density many--body effects alone suppress the rates by a factor of two and that the suppression factors increase to \sim5 at 4×10144\times10^{14} g cm3^{-3}. The associated increase in the neutrino--matter mean--free--paths parallels that found for neutral--current interactions and opens up interesting possibilities in the context of the delayed supernova mechanism and protoneutron star cooling.Comment: 11 pages, APS REVTeX format, 1 PostScript figure, uuencoded compressed, and tarred, submitted to Physical Review Letter

    Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields

    Full text link
    We derive the cross section of neutrino-nucleon scatterings in supernova magnetic fields, including weak-magnetism and recoil corrections. Since the weak interaction violates the parity, the scattering cross section asymmetrically depends on the directions of the neutrino momenta to the magnetic field; the origin of pulsar kicks may be explained by the mechanism. An asymmetric neutrino emission (a drift flux) due to neutrino-nucleon scatterings is absent at the leading level of O(μBB/T)\mathcal O(\mu_BB/T), where μB\mu_B is the nucleon magneton, BB is the magnetic field strength, and TT is the matter temperature at a neutrinosphere. This is because at this level the drift flux of the neutrinos are exactly canceled by that of the antineutrinos. Hence, the relevant asymmetry in the neutrino emission is suppressed by much smaller coefficient of O(μBB/m)\mathcal O(\mu_BB/m), where mm is the nucleon mass; detailed form of the relevant drift flux is also derived from the scattering cross section, using a simple diffusion approximation. It appears that the asymmetric neutrino emission is too small to induce the observed pulsar kicks. However, we note the fact that the drift flux is proportional to the deviation of the neutrino distribution function from the value of thermal equilibrium at neutrinosphere. Since the deviation can be large for non-electron neutrinos, it is expected that there occurs cancellation between the deviation and the small suppression factor of O(μBB/m)\mathcal O(\mu_BB/m). Using a simple parameterization, we show that the drift flux due to neutrino-nucleon scatterings may be comparable to the leading term due to beta processes with nucleons, which has been estimated to give a relevant kick velocity when the magnetic field is sufficiently strong as 101510^{15}--101610^{16} G.Comment: 19 pages, 1 figure. Accepted by Physical Review

    Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales

    Full text link
    We investigate the rates of production and thermalization of νμ\nu_\mu and ντ\nu_\tau neutrinos at temperatures and densities relevant to core-collapse supernovae and protoneutron stars. Included are contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering. For the scattering processes, in order to incorporate the full scattering kinematics at arbitrary degeneracy, the structure function formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric matter. We find that electron scattering dominates nucleon scattering as a thermalization process at low neutrino energies (ϵν10\epsilon_\nu\lesssim 10 MeV), but that nucleon scattering is always faster than or comparable to electron scattering above ϵν10\epsilon_\nu\simeq10 MeV. In addition, for ρ1013\rho\gtrsim 10^{13} g cm3^{-3}, T14T\lesssim14 MeV, and neutrino energies 60\lesssim60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron annihilation as a production mechanism for νμ\nu_\mu and ντ\nu_\tau neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to pub/thompso
    corecore