1,116 research outputs found

    Light Scattering in Transparent Glass Ceramics

    Full text link
    Transparent glass ceramic materials, with microstructures comprised of dispersed nanocrystallites in a residual glass matrix, offer the prospect of nonlinear optical properties. However, good transparency requires low optical scattering and low atomic absorption. The attenuation of light due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of crystals in the glass. Here, we model the glass ceramic as a late-stage phase-separated structure, and compute scattering in this model. We find that the turbidity follows a k^8 R^7 relationship, where k is the wavevector of light in the glass ceramic and R is the average radius of the crystals in the glass.Comment: 4 pages, 4 figure

    Integrated research program in space nutrition Semiannual report, 1 Feb. - 31 Jul. 1970

    Get PDF
    Nutrition and breeding behavior of pocket mouse for space nutrition applicatio

    Island Size Selectivity during 2D Ag Island Coarsening on Ag (111)

    Full text link
    We report on early stages of submonolayer Ag island coarsening on Ag(111) surface at room temperature (300300 K) carried out using realistic kinetic Monte Carlo (KMC) simulations. We find that during early stages, coarsening proceeds as a sequence of selected island sizes creating peaks and valleys in the island size distribution. We find that island-size selectivity is due to formation of kinetically stable islands for certain sizes because of adatom detachment/attachment processes and large activation barrier for kink detachment. In addition, we find that the ratio of number of adatom attachment to detachment processes to be independent of parameters of initial configuration and also on the initial shapes of the islands confirming that island-size selectivity is independent of initial conditions.These simulations were carried out using a very large database of processes identified by their local environment and whose activation barriers were calculated using the embedded-atom method

    Polydispersity Effects in Colloid-Polymer Mixtures

    Full text link
    We study phase separation and transient gelation in a mixture consisting of polydisperse colloids and non-adsorbing polymers, where the ratio of the average size of the polymer to that of the colloid is approximately 0.063. Unlike what has been reported previously for mixtures with somewhat lower colloid polydispersity, the addition of polymers does not expand the fluid-solid coexistence region. Instead, we find a region of fluid-solid coexistence which has an approximately constant width but an unexpected re-entrant shape. We detect the presence of a metastable gas-liquid binodal, which gives rise to two-stepped crystallization kinetics that can be rationalized as the effect of fractionation. Finally, we find that the separation into multiple coexisting solid phases at high colloid volume fractions predicted by equilibrium statistical mechanics is kinetically suppressed before the system reaches dynamical arrest.Comment: 11 pages, 5 figure

    Liesegang patterns: Effect of dissociation of the invading electrolyte

    Full text link
    The effect of dissociation of the invading electrolyte on the formation of Liesegang bands is investigated. We find, using organic compounds with known dissociation constants, that the spacing coefficient, 1+p, that characterizes the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing dissociation constant, K_d. Theoretical arguments are developed to explain these experimental findings and to calculate explicitly the K_d dependence of 1+p.Comment: RevTex, 8 pages, 3 eps figure

    Band Formation during Gaseous Diffusion in Aerogels

    Full text link
    We study experimentally how gaseous HCl and NH_3 diffuse from opposite sides of and react in silica aerogel rods with porosity of 92 % and average pore size of about 50 nm. The reaction leads to solid NH_4Cl, which is deposited in thin sheet-like structures. We present a numerical study of the phenomenon. Due to the difference in boundary conditions between this system and those usually studied, we find the sheet-like structures in the aerogel to differ significantly from older studies. The influence of random nucleation centers and inhomogeneities in the aerogel is studied numerically.Comment: 7 pages RevTex and 8 figures. Figs. 4-8 in Postscript, Figs. 1-3 on request from author

    EEG-fMRI Based Information Theoretic Characterization of the Human Perceptual Decision System

    Get PDF
    The modern metaphor of the brain is that of a dynamic information processing device. In the current study we investigate how a core cognitive network of the human brain, the perceptual decision system, can be characterized regarding its spatiotemporal representation of task-relevant information. We capitalize on a recently developed information theoretic framework for the analysis of simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging data (fMRI) (Ostwald et al. (2010), NeuroImage 49: 498–516). We show how this framework naturally extends from previous validations in the sensory to the cognitive domain and how it enables the economic description of neural spatiotemporal information encoding. Specifically, based on simultaneous EEG-fMRI data features from n = 13 observers performing a visual perceptual decision task, we demonstrate how the information theoretic framework is able to reproduce earlier findings on the neurobiological underpinnings of perceptual decisions from the response signal features' marginal distributions. Furthermore, using the joint EEG-fMRI feature distribution, we provide novel evidence for a highly distributed and dynamic encoding of task-relevant information in the human brain

    Chiral Crystal Growth under Grinding

    Full text link
    To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown that Ostwald ripening without grinding is extremely slow to select chirality, if possible. Grinding alone also cannot achieve chirality selection. For the accomplishment of homochirality, we need an enhanced chirality change on crystalline surface. With this "autocatalytic effect" and the recycling of monomers due to rinding, an exponential increase of crystal enantiomeric excess to homochiral state is realized.Comment: 10 pages, 5 figure

    Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures

    Full text link
    By analytically solving some simple models of phase-ordering kinetics, we suggest a mechanism for the onset of non-equilibrium behaviour in colloid-polymer mixtures. These mixtures can function as models of atomic systems; their physics therefore impinges on many areas of thermodynamics and phase-ordering. An exact solution is found for the motion of a single, planar interface separating a growing phase of uniform high density from a supersaturated low density phase, whose diffusive depletion drives the interfacial motion. In addition, an approximate solution is found for the one-dimensional evolution of two interfaces, separated by a slab of a metastable phase at intermediate density. The theory predicts a critical supersaturation of the low-density phase, above which the two interfaces become unbound and the metastable phase grows ad infinitum. The growth of the stable phase is suppressed in this regime.Comment: 27 pages, Latex, eps

    Line Defects in Molybdenum Disulfide Layers

    Full text link
    Layered molecular materials and especially MoS2 are already accepted as promising candidates for nanoelectronics. In contrast to the bulk material, the observed electron mobility in single-layer MoS2 is unexpectedly low. Here we reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion domains, where the layer changes its direction through a line defect. The line defects are observed experimentally by atomic resolution TEM. The structures were modeled and the stability and electronic properties of the defects were calculated using quantum-mechanical calculations based on the Density-Functional Tight-Binding method. The results of these calculations indicate the occurrence of new states within the band gap of the semiconducting MoS2. The most stable non-stoichiometric defect structures are observed experimentally, one of which contains metallic Mo-Mo bonds and another one bridging S atoms
    • …
    corecore