166 research outputs found
Use of MMG signals for the control of powered orthotic devices: Development of a rectus femoris measurement protocol
Copyright © 2009 Rehabilitation Engineering and Assistive Technology Society (RESNA). This is an Author's Accepted Manuscript of an article published in Assistive Technology, 21(1), 1 - 12, 2009, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/10400430902945678.A test protocol is defined for the purpose of measuring rectus femoris mechanomyographic (MMG) signals. The protocol is specified in terms of the following: measurement equipment, signal processing requirements, human postural requirements, test rig, sensor placement, sensor dermal fixation, and test procedure. Preliminary tests of the statistical nature of rectus femoris MMG signals were performed, and Gaussianity was evaluated by means of a two-sided Kolmogorov-Smirnov test. For all 100 MMG data sets obtained from the testing of two volunteers, the null hypothesis of Gaussianity was rejected at the 1%, 5%, and 10% significance levels. Most skewness values were found to be greater than 0.0, while all kurtosis values were found to be greater than 3.0. A statistical convergence analysis also performed on the same 100 MMG data sets suggested that 25 MMG acquisitions should prove sufficient to statistically characterize rectus femoris MMG. This conclusion is supported by the qualitative characteristics of the mean rectus femoris MMG power spectral densities obtained using 25 averages
Muscle contractile properties directly influence shared synaptic inputs to spinal motor neurons
Alpha band oscillations in shared synaptic inputs to the alpha motor neuron pool can be considered an involuntary source of noise that hinders precise voluntary force production. This study investigated the impact of changing muscle length on the shared synaptic oscillations to spinal motor neurons, particularly in the physiological tremor band. Fourteen healthy individuals performed low-level dorsiflexion contractions at ankle joint angles of 90° and 130°, while high-density surface electromyography (HDsEMG) was recorded from the tibialis anterior (TA). We decomposed the HDsEMG into motor units spike trains and calculated the motor units’ coherence within the delta (1–5 Hz), alpha (5–15 Hz), and beta (15–35 Hz) bands. Additionally, force steadiness and force spectral power within the tremor band were quantified. Results showed no significant differences in force steadiness between 90° and 130°. In contrast, alpha band oscillations in both synaptic inputs and force output decreased as the length of the TA was moved from shorter (90°) to longer (130°), with no changes in delta and beta bands. In a second set of experiments (10 participants), evoked twitches were recorded with the ankle joint at 90° and 130°, revealing longer twitch durations in the longer TA muscle length condition compared to the shorter. These experimental results, supported by a simple computational simulation, suggest that increasing muscle length enhances the muscle's low-pass filtering properties, influencing the oscillations generated by the Ia afferent feedback loop. Therefore, this study provides valuable insights into the interplay between muscle biomechanics and neural oscillations
Sex-differences in the longitudinal recovery of neuromuscular function in COVID-19 associated acute respiratory distress syndrome survivors
Introduction: Patients admitted to the intensive care unit (ICU) following severe acute respiratory syndrome 2 (SARS-CoV-2) infection may have muscle weakness up to 1 year or more following ICU discharge. However, females show greater muscle weakness than males, indicating greater neuromuscular impairment. The objective of this work was to assess sex differences in longitudinal physical functioning following ICU discharge for SARS-CoV-2 infection. Methods: We performed longitudinal assessment of physical functioning in two groups: 14 participants (7 males, 7 females) in the 3-to-6 month and 28 participants (14 males, 14 females) in the 6-to-12 month group following ICU discharge and assessed differences between the sexes. We examined self-reported fatigue, physical functioning, compound muscle action potential (CMAP) amplitude, maximal strength, and the neural drive to the tibialis anterior muscle. Results: We found no sex differences in the assessed parameters in the 3-to-6-month follow-up, indicating significant weakness in both sexes. Sex differences emerged in the 6-to-12-month follow-up. Specifically, females exhibited greater impairments in physical functioning, including lower strength, walking lower distances, and high neural input even 1 year following ICU-discharge. Discussion: Females infected by SARS-CoV-2 display significant impairments in functional recovery up to 1 year following ICU discharge. The effects of sex should be considered in post-COVID neurorehabilitation
Aquaculture ecosystem microbiome at the water-fish interface: the case-study of rainbow trout fed with Tenebrio molitor novel diets
Background: Sustainable aquaculture relies on multiple factors, including water quality, fish diets, and farmed fish. Replacing fishmeal (FM) with alternative protein sources is key for improving sustainability in aquaculture and promoting fish health. Indeed, great research efforts have been made to evaluate novel feed formulations, focusing especially on the effects on the fish gut microbiome. Few studies have explored host-environment interactions. In the present study, we evaluated the influence of novel insect-based (Tenebrio molitor) fish diets on the microbiome at the water-fish interface in an engineered rainbow trout (Oncorhynchus mykiss) farming ecosystem. Using 16S rRNA gene metabarcoding, we comprehensively analyzed the microbiomes of water, tank biofilm, fish intestinal mucus, fish cutis, and feed samples. Results: Core microbiome analysis revealed the presence of a highly reduced core shared by all sample sources, constituted by Aeromonas spp., in both the control and novel feed test groups. Network analysis showed that samples were clustered based on the sample source, with no significant differences related to the feed formulation tested. Thus, the different diets did not seem to affect the environment (water and tank biofilm) and fish (cutis and intestinal mucus) microbiomes. To disentangle the contribution of feed at a finer scale, we performed a differential abundance analysis and observed differential enrichment/impoverishment in specific taxa, comparing the samples belonging to the control diet group and the insect-based diet group. Conclusions: Omic exploration of the water-fish interface exposes patterns that are otherwise undetected. These data demonstrate a link between the environment and fish and show that subtle but significant differences are caused by feed composition. Thus, the research presented here is a step towards positively influencing the aquaculture environment and its microbiome
The design and testing of a novel mechanomyogram-driven switch controlled by small eyebrow movements
<p>Abstract</p> <p>Background</p> <p>Individuals with severe physical disabilities and minimal motor behaviour may be unable to use conventional mechanical switches for access. These persons may benefit from access technologies that harness the volitional activity of muscles. In this study, we describe the design and demonstrate the performance of a binary switch controlled by mechanomyogram (MMG) signals recorded from the frontalis muscle during eyebrow movements.</p> <p>Methods</p> <p>Muscle contractions, detected in real-time with a continuous wavelet transform algorithm, were used to control a binary switch for computer access. The automatic selection of scale-specific thresholds reduced the effect of artefact, such as eye blinks and head movement, on the performance of the switch. Switch performance was estimated by cued response-tests performed by eleven participants (one with severe physical disabilities).</p> <p>Results</p> <p>The average sensitivity and specificity of the switch was 99.7 ± 0.4% and 99.9 ± 0.1%, respectively. The algorithm performance was robust against typical participant movement.</p> <p>Conclusions</p> <p>The results suggest that the frontalis muscle is a suitable site for controlling the MMG-driven switch. The high accuracies combined with the minimal requisite effort and training show that MMG is a promising binary control signal. Further investigation of the potential benefits of MMG-control for the target population is warranted.</p
Italian hospitals on the web: a cross-sectional analysis of official websites
<p>Abstract</p> <p>Background</p> <p>Although the use of the Internet for health purposes has increased steadily in the last decade, only a few studies have explored the information provided by the websites of health institutions and no studies on the on-line activities of Italian hospitals have been performed to date. The aim of this study was to explore the characteristics of the contents and the user-orientation of Italian hospital websites.</p> <p>Methods</p> <p>The cross-sectional analysis considered all the Italian hospitals with a working website between December 2008 and February 2009. The websites were coded using an <it>ad hoc </it>Codebook, comprising eighty-nine items divided into five sections: technical characteristics, hospital information and facilities, medical services, interactive on-line services and external activities. We calculated a website evaluation score, on the basis of the items satisfied, to compare private (PrHs) and public hospitals, the latter divided into ones with their own website (PubHs-1) and ones with a section on the website of their Local Health Authority (PubHs-2). Lastly, a descriptive analysis of each item was carried out.</p> <p>Results</p> <p>Out of the 1265 hospitals in Italy, we found that 419 of the 652 public hospitals (64.3%) and 344 of the 613 PrHs (56.1%) had a working website (p = 0.01). The mean website evaluation score was 41.9 for PubHs-1, 21.2 for PubHs-2 and 30.8 for PrHs (p < 0.001).</p> <p>Only 5 hospitals out of 763 (< 1%) provided specific clinical performance indicators, such as the nosocomial infection rate or the surgical mortality rates. Regarding interactive on-line services, although nearly 80% of both public and private hospitals enabled users to communicate on-line, less than 18% allowed the reservation of medical services, and only 8 websites (1%) provided a health-care forum.</p> <p>Conclusions</p> <p>A high percentage of hospitals did not provide an official website and the majority of the websites found had several limitations. Very few hospitals provided information to increase the credibility of the hospital and user confidence in the institution. This study suggests that Italian hospital websites are more a source of information on admissions and services than a means of communication between user and hospital.</p
Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review
The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG
Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography
Skeletal muscle operates as a near-constant volume system; as such muscle shortening during contraction is transversely linked to radial deformation. Therefore, to assess contractile properties of skeletal muscle, radial displacement can be evoked and measured. Mechanomyography measures muscle radial displacement and during the last 20 years, tensiomyography has become the most commonly used and widely reported technique among the various methodologies of mechanomyography. Tensiomyography has been demonstrated to reliably measure peak radial displacement during evoked muscle twitch, as well as muscle twitch speed. A number of parameters can be extracted from the tensiomyography displacement/time curve and the most commonly used and reliable appear to be peak radial displacement and contraction time. The latter has been described as a valid non-invasive means of characterising skeletal muscle, based on fibre-type composition. Over recent years, applications of tensiomyography measurement within sport and exercise have appeared, with applications relating to injury, recovery and performance. Within the present review, we evaluate the perceived strengths and weaknesses of tensiomyography with regard to its efficacy within applied sports medicine settings. We also highlight future tensiomyography areas that require further investigation. Therefore, the purpose of this review is to critically examine the existing evidence surrounding tensiomyography as a tool within the field of sports medicine
Chronic Cough and Eosinophilic Esophagitis: An Uncommon Association
An increasing number of children, usually with gastrointestinal symptoms, is diagnosed with eosinophilic esophagitis (EE), and a particular subset of these patients complains of airway manifestations. We present the case of a 2-year-old child with chronic dry cough in whom EE was found after a first diagnosis of gastroesophageal reflux disease (GERD) due to pathological 24-hour esophageal pH monitoring. Traditional allergologic tests were negative, while patch tests were diagnostic for cow's milk allergy. We discuss the intriguing relationship between GERD and EE and the use of patch test for the allergologic screening of patients
High-Frequency, Low-Magnitude Vibration Does Not Prevent Bone Loss Resulting from Muscle Disuse in Mice following Botulinum Toxin Injection
High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16–18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ±0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12±9% and 7±6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX
- …