1,709 research outputs found

    Ceramics for the advanced automotive gas turbine engine: A look at a single shaft design

    Get PDF
    The results of a preliminary analysis of a single shaft regenerative design with a single stage radial turbine are presented to show the fuel economy that can be achieved at high turbine inlet temperatures, with this particular advanced design, if the turbine tip speed and regenerator inlet temperature are not limited. The engine size was 100 hp for application to a 3500 lb auto. The fuel economy was analyzed by coupling the engine to the auto through a continuously variable speed-ratio transmission and operating the system at constant turbine inlet temperature over the Composite Driving Cycle. The fuel was gasoline and the analysis was for a 85 F day. With a turbine inlet temperature of 2500 F the fuel economy was 26.2 mpg, an improvement of 18 percent over that of 22.3 mpg with a turbine inlet temperature of 1900 F. The turbine tip speed needed for best economy with the 2500 F engine was 2530 ft/sec. The regenerator temperature was approximately 2200 F at idle. Disk stresses were estimated for one single stage radial turbine and two two-stage radial-axial turbines and compared with maximum allowable stress curves estimated for a current ceramic material. Results show a need for higher Weibull Modulus, higher strength ceramics

    Heat-Transfer Characteristics of Partially Film Cooled Plug Nozzle on a J-85 Afterburning Turbojet Engine

    Get PDF
    Plug nozzle film cooling data were obtained downstream of a slot located at 42 percent of the total plug length on a J-85 engine. Film cooling reduced the aft end wall temperature as much as 150 K, reduced total pressure loss in the upstream convection cooling passages by 50 percent, and reduced estimated compressor bleed flow requirement by 14 percent compared to an all convectively cooled nozzle. Shock waves along the plug surface strongly influenced temperature distributions on both convection and film cooled portions. The effect was most severe at nozzle pressure ratios below 10 where adverse pressure gradients were most severe

    Cold-flow performance of several variations of a ram-air-cooled plug nozzle for supersonic-cruise aircraft

    Get PDF
    Experimental data were obtained with a 21.59 cm (8.5 in.) diameter cold-flow model in a static altitude facility to determine the thrust and pumping characteristics of several variations of a ram-air-cooled plug nozzle. Tests were conducted over a range of nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Primary throat area was also varied to simulate afterburner on and off. Effect of plug size, outer shroud length, primary nozzle geometry, and varying amounts of secondary flow were investigated. At a supersonic cruise pressure ratio of 27, nozzle efficiencies were 99.7 percent for the best configurations

    A turbojet simulator for Mach numbers up to 2.0

    Get PDF
    A turbojet simulator was designed and fabricated for use in wind tunnel models. The simulator contains a six-stage, axial-flow compressor powered by a three-stage, axial-flow turbine. High pressure heated air was used to drive the turbine. At design conditions, compressor axial flow, turbine exit flow, and a third supplementary flow all entered the exhaust nozzle at equal values of pressure and termperature. Overall aerodynamic design, compressor operating conditions, automatic controls, turbine aerodynamic design, instrumentation, and calibration procedure is presented. Performance of the device when used to simulate a J-85 turbojet engine at transonic speeds is reported. The installed nozzle performance obtained with the simulator is also discussed and compared with flight data

    Two-dimensional cascade investigation of a turbine tandem blade design

    Get PDF
    Flow and wake characteristics on turbine tandem blades in two dimensional cascade tunne

    A Meta-Analysis of Procedures to Change Implicit Measures

    Get PDF
    Using a novel technique known as network meta-analysis, we synthesized evidence from 492 studies (87,418 participants) to investigate the effectiveness of procedures in changing implicit measures, which we define as response biases on implicit tasks. We also evaluated these procedures’ effects on explicit and behavioral measures. We found that implicit measures can be changed, but effects are often relatively weak (|ds| \u3c .30). Most studies focused on producing short-term changes with brief, single-session manipulations. Procedures that associate sets of concepts, invoke goals or motivations, or tax mental resources changed implicit measures the most, whereas procedures that induced threat, affirmation, or specific moods/emotions changed implicit measures the least. Bias tests suggested that implicit effects could be inflated relative to their true population values. Procedures changed explicit measures less consistently and to a smaller degree than implicit measures and generally produced trivial changes in behavior. Finally, changes in implicit measures did not mediate changes in explicit measures or behavior. Our findings suggest that changes in implicit measures are possible, but those changes do not necessarily translate into changes in explicit measures or behavior

    Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices

    Full text link
    We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials.Comment: 32 pages, 7 figure

    Assessing sexual interest in children using the Go/No-Go Association Test

    Get PDF
    The present study investigated whether a latency-based Go/No-Go Association Task (GNAT) could be used as an indirect measure of sexual interest in children. A sample 29 individuals with a history of exclusive extrafamilial offenses against a child and 15 individuals with either a history of exclusive intrafamilial or mixed offenses (i.e., against both adults and children) were recruited from a treatment center in the US. Also, a sample of 26 nonoffenders was recruited from a university in the UK. All participants completed the Sexual Fantasy-GNAT, a Control-GNAT, and two self-report measures of sexual fantasy. It was hypothesized that, relative to the two comparison groups, the extrafamilial group would respond faster on the block that paired 'sexual fantasy' and 'children'. Also, GNAT scores were expected to correlate with child-related sexual fantasies. Support was found for both hypotheses. Response-latency indices were also found to effectively distinguish the extrafamilial group, as well as those who self-reported using child-related sexual fantasies. The implications of these findings, along with the study's limitations and suggestions for future research, are discussed

    Cross-Lingual Neural Network Speech Synthesis Based on Multiple Embeddings

    Get PDF
    The paper presents a novel architecture and method for speech synthesis in multiple languages, in voices of multiple speakers and in multiple speaking styles, even in cases when speech from a particular speaker in the target language was not present in the training data. The method is based on the application of neural network embedding to combinations of speaker and style IDs, but also to phones in particular phonetic contexts, without any prior linguistic knowledge on their phonetic properties. This enables the network not only to efficiently capture similarities and differences between speakers and speaking styles, but to establish appropriate relationships between phones belonging to different languages, and ultimately to produce synthetic speech in the voice of a certain speaker in a language that he/she has never spoken. The validity of the proposed approach has been confirmed through experiments with models trained on speech corpora of American English and Mexican Spanish. It has also been shown that the proposed approach supports the use of neural vocoders, i.e. that they are able to produce synthesized speech of good quality even in languages that they were not trained on

    A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry

    Get PDF
    Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene) and orientation (0° to 90°, orientation, ORI gene). An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference
    corecore