1,809 research outputs found
Decoherence of flux qubits due to 1/f flux noise
We have investigated decoherence in Josephson-junction flux qubits. Based on
the measurements of decoherence at various bias conditions, we discriminate
contributions of different noise sources. In particular, we present a Gaussian
decay function of the echo signal as evidence of dephasing due to flux
noise whose spectral density is evaluated to be about /Hz
at 1 Hz. We also demonstrate that at an optimal bias condition where the noise
sources are well decoupled the coherence observed in the echo measurement is
mainly limited by energy relaxation of the qubit.Comment: 4 pages, error in Fig.4 corrected, to appear in PR
Positive pion absorption on 3He using modern trinucleon wave functions
We study pion absorption on 3He employing trinucleon wave functions
calculated from modern realistic NN interactions (Paris, CD Bonn). Even though
the use of the new wave functions leads to a significant improvement over older
calculations with regard to both cross section and polarization data, there are
hints that polarization data with quasifree kinematics cannot be described by
just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure
Exact solutions of the isoholonomic problem and the optimal control problem in holonomic quantum computation
The isoholonomic problem in a homogeneous bundle is formulated and solved
exactly. The problem takes a form of a boundary value problem of a variational
equation. The solution is applied to the optimal control problem in holonomic
quantum computer. We provide a prescription to construct an optimal controller
for an arbitrary unitary gate and apply it to a -dimensional unitary gate
which operates on an -dimensional Hilbert space with . Our
construction is applied to several important unitary gates such as the Hadamard
gate, the CNOT gate, and the two-qubit discrete Fourier transformation gate.
Controllers for these gates are explicitly constructed.Comment: 19 pages, no figures, LaTeX2
Electronic cooling of a submicron-sized metallic beam
We demonstrate electronic cooling of a suspended AuPd island using
superconductor-insulator-normal metal tunnel junctions. This was achieved by
developing a simple fabrication method for reliably releasing narrow submicron
sized metal beams. The process is based on reactive ion etching and uses a
conducting substrate to avoid charge-up damage and is compatible with e.g.
conventional e-beam lithography, shadow-angle metal deposition and oxide tunnel
junctions. The devices function well and exhibit clear cooling; up to factor of
two at sub-kelvin temperatures.Comment: 4 pages, 3 figure
Complete next-to-leading order calculation for pion production in nucleon-nucleon collisions at threshold
Based on a counting scheme that explicitly takes into account the large
momentum sqrt(M m_pi) characteristic for pion production in nucleon-nucleon
collisions we calculate all diagrams for the reaction NN --> NN pi at threshold
up to next-to-leading order. At this order there are no free parameters and the
size of the next-to-leading order contributions is in line with the expectation
from power counting. The sum of loop corrections at that order vanishes for the
process pp --> pp pi^0 at threshold. The total contribution at next-to-leading
order from loop diagrams that include the delta degree of freedom vanishes at
threshold in both reaction channels pp --> pp pi^0, pn pi^+.Comment: 9 pages, 4 figure
Reconfigurable controlled two-qubit operation on a quantum photonic chip
Integrated quantum photonics is an appealing platform for quantum information
processing, quantum communication and quantum metrology. In all these
applications it is necessary not only to be able to create and detect Fock
states of light but also to program the photonic circuits that implements some
desired logical operation. Here we demonstrate a reconfigurable controlled
two-qubit operation on a chip using a multiwaveguide interferometer with a
tunable phase shifter. We find excellent agreement between theory and
experiment, with a 0.98 \pm 0.02 average similarity between measured and ideal
operations
Unitarity constraint for threshold coherent pion photoproduction on the deuteron and chiral perturbation theory
The contribution of the two-step process gamma + d -> p + n -> pi0 + d to the
imaginary part of the amplitude for coherent pion production on the deuteron is
calculated exploiting unitarity constraints. The result shows that this
absorptive process is not negligible and has to be considered in an extraction
of the elementary neutron production amplitude from the gamma + d -> pi0 + d
cross section at threshold. In addition, it is argued that a consistent
calculation of gamma + d -> pi0 + d in baryon chiral perturbation theory beyond
next-to-leading order requires the inclusion of this absorptive process.Comment: 11 pages revtex including 2 postscript figure
Dynamical invariants for quantum control of four-level systems
We present a Lie-algebraic classification and detailed construction of the
dynamical invariants, also known as Lewis-Riesenfeld invariants, of the
four-level systems including two-qubit systems which are most relevant and
sufficiently general for quantum control and computation. These invariants not
only solve the time-dependent Schr\"odinger equation of four-level systems
exactly but also enable the control, and hence quantum computation based on
which, of four-level systems fast and beyond adiabatic regimes.Comment: 11 pages, 5 table
- âŠ