1,809 research outputs found

    Decoherence of flux qubits due to 1/f flux noise

    Full text link
    We have investigated decoherence in Josephson-junction flux qubits. Based on the measurements of decoherence at various bias conditions, we discriminate contributions of different noise sources. In particular, we present a Gaussian decay function of the echo signal as evidence of dephasing due to 1/f1/f flux noise whose spectral density is evaluated to be about (10−6Ω0)2(10^{-6} \Phi_0)^2/Hz at 1 Hz. We also demonstrate that at an optimal bias condition where the noise sources are well decoupled the coherence observed in the echo measurement is mainly limited by energy relaxation of the qubit.Comment: 4 pages, error in Fig.4 corrected, to appear in PR

    Positive pion absorption on 3He using modern trinucleon wave functions

    Get PDF
    We study pion absorption on 3He employing trinucleon wave functions calculated from modern realistic NN interactions (Paris, CD Bonn). Even though the use of the new wave functions leads to a significant improvement over older calculations with regard to both cross section and polarization data, there are hints that polarization data with quasifree kinematics cannot be described by just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure

    Exact solutions of the isoholonomic problem and the optimal control problem in holonomic quantum computation

    Full text link
    The isoholonomic problem in a homogeneous bundle is formulated and solved exactly. The problem takes a form of a boundary value problem of a variational equation. The solution is applied to the optimal control problem in holonomic quantum computer. We provide a prescription to construct an optimal controller for an arbitrary unitary gate and apply it to a k k -dimensional unitary gate which operates on an N N -dimensional Hilbert space with N≄2k N \geq 2k . Our construction is applied to several important unitary gates such as the Hadamard gate, the CNOT gate, and the two-qubit discrete Fourier transformation gate. Controllers for these gates are explicitly constructed.Comment: 19 pages, no figures, LaTeX2

    Electronic cooling of a submicron-sized metallic beam

    Get PDF
    We demonstrate electronic cooling of a suspended AuPd island using superconductor-insulator-normal metal tunnel junctions. This was achieved by developing a simple fabrication method for reliably releasing narrow submicron sized metal beams. The process is based on reactive ion etching and uses a conducting substrate to avoid charge-up damage and is compatible with e.g. conventional e-beam lithography, shadow-angle metal deposition and oxide tunnel junctions. The devices function well and exhibit clear cooling; up to factor of two at sub-kelvin temperatures.Comment: 4 pages, 3 figure

    Complete next-to-leading order calculation for pion production in nucleon-nucleon collisions at threshold

    Get PDF
    Based on a counting scheme that explicitly takes into account the large momentum sqrt(M m_pi) characteristic for pion production in nucleon-nucleon collisions we calculate all diagrams for the reaction NN --> NN pi at threshold up to next-to-leading order. At this order there are no free parameters and the size of the next-to-leading order contributions is in line with the expectation from power counting. The sum of loop corrections at that order vanishes for the process pp --> pp pi^0 at threshold. The total contribution at next-to-leading order from loop diagrams that include the delta degree of freedom vanishes at threshold in both reaction channels pp --> pp pi^0, pn pi^+.Comment: 9 pages, 4 figure

    Reconfigurable controlled two-qubit operation on a quantum photonic chip

    Get PDF
    Integrated quantum photonics is an appealing platform for quantum information processing, quantum communication and quantum metrology. In all these applications it is necessary not only to be able to create and detect Fock states of light but also to program the photonic circuits that implements some desired logical operation. Here we demonstrate a reconfigurable controlled two-qubit operation on a chip using a multiwaveguide interferometer with a tunable phase shifter. We find excellent agreement between theory and experiment, with a 0.98 \pm 0.02 average similarity between measured and ideal operations

    Unitarity constraint for threshold coherent pion photoproduction on the deuteron and chiral perturbation theory

    Get PDF
    The contribution of the two-step process gamma + d -> p + n -> pi0 + d to the imaginary part of the amplitude for coherent pion production on the deuteron is calculated exploiting unitarity constraints. The result shows that this absorptive process is not negligible and has to be considered in an extraction of the elementary neutron production amplitude from the gamma + d -> pi0 + d cross section at threshold. In addition, it is argued that a consistent calculation of gamma + d -> pi0 + d in baryon chiral perturbation theory beyond next-to-leading order requires the inclusion of this absorptive process.Comment: 11 pages revtex including 2 postscript figure

    Dynamical invariants for quantum control of four-level systems

    Full text link
    We present a Lie-algebraic classification and detailed construction of the dynamical invariants, also known as Lewis-Riesenfeld invariants, of the four-level systems including two-qubit systems which are most relevant and sufficiently general for quantum control and computation. These invariants not only solve the time-dependent Schr\"odinger equation of four-level systems exactly but also enable the control, and hence quantum computation based on which, of four-level systems fast and beyond adiabatic regimes.Comment: 11 pages, 5 table
    • 

    corecore