611 research outputs found

    Accuracy and range of validity of the Wigner surmise for mixed symmetry classes in random matrix theory

    Full text link
    Schierenberg et al. [Phys. Rev. E 85, 061130 (2012)] recently applied the Wigner surmise, i.e., substitution of \infty \times \infty matrices by their 2 \times 2 counterparts for the computation of level spacing distributions, to random matrix ensembles in transition between two universality classes. I examine the accuracy and the range of validity of the surmise for the crossover between the Gaussian orthogonal and unitary ensembles by contrasting them with the large-N results that I evaluated using the Nystrom-type method for the Fredholm determinant. The surmised expression at the best-fitting parameter provides a good approximation for 0 \lesssim s \lesssim 2, i.e., the validity range of the original surmise.Comment: 3 pages in REVTeX, 10 figures. (v2) Title changed, version to appear in Phys. Rev.

    Reply to Comment on Dirac spectral sum rules for QCD in three dimensions

    Get PDF
    I reply to the comment by Dr S. Nishigaki (hep-th/0007042) to my papers Phys. Rev. D61 (2000) 056005 and Phys. Rev. D62 (2000) 016005.Comment: 2 pages, LaTeX, no figure

    Universality of random matrices in the microscopic limit and the Dirac operator spectrum

    Get PDF
    We prove the universality of correlation functions of chiral unitary and unitary ensembles of random matrices in the microscopic limit. The essence of the proof consists in reducing the three-term recursion relation for the relevant orthogonal polynomials into a Bessel equation governing the local asymptotics around the origin. The possible physical interpretation as the universality of the soft spectrum of the Dirac operator is briefly discussed

    Comments on Supersymmetric Vector and Matrix Models

    Full text link
    Some results in random matrices are generalized to supermatrices, in particular supermatrix integration is reduced to an integration over the eigenvalues and the resulting volume element is shown to be equivalent to a one dimensional Coulomb gas of both positive and negative charges.It is shown that,for polynomial potentials, after removing the instability due to the annihilation of opposite charges, supermatrix models are indistinguishable from ordinary matrix models, in agreement with a recent result by Alvarez-Gaume and Manes. It is pointed out however that this may not be true for more general potentials such as for instance the supersymmetric generalization of the Penner model.Comment: 6 page

    Variational approach to the scattering of charged particles by a many-electron system

    Get PDF
    We report a variational approach to the nonlinearly screened interaction of charged particles with a many-electron system. This approach has been developed by introducing a modification of the Schwinger variational principle of scattering theory, which allows to obtain nonperturbative scattering cross-sections of moving projectiles from the knowledge of the linear and quadratic density-response functions of the target. Our theory is illustrated with a calculation of the energy loss per unit path length of slow antiprotons moving in a uniform electron gas, which shows good agreement with a fully nonlinear self-consistent Hartree calculation. Since available self-consistent calculations are restricted to low heavy-projectile velocities, we expect our theory to have novel applications to a variety of processes where nonlinear screening plays an important role.Comment: 10 pages, 2 figures; Accepted to Physical Review

    Scaling Behaviors of Branched Polymers

    Get PDF
    We study the thermodynamic behavior of branched polymers. We first study random walks in order to clarify the thermodynamic relation between the canonical ensemble and the grand canonical ensemble. We then show that correlation functions for branched polymers are given by those for Ď•3\phi^3 theory with a single mass insertion, not those for the Ď•3\phi^3 theory themselves. In particular, the two-point function behaves as 1/p41/p^4, not as 1/p21/p^2, in the scaling region. This behavior is consistent with the fact that the Hausdorff dimension of the branched polymer is four.Comment: 17 pages, 3 figure
    • …
    corecore