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Variational approach to the scattering of charged particles by a many-electron system
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We report a variational approach to the nonlinearly screened interaction of charged particles with a many-
electron system. This approach has been developed by introducing a modification of the Schwinger variational
principle of scattering theory, which allows one to obtain nonperturbative scattering cross sections of moving
projectiles from the knowledge of the linear and quadratic density-response functions of the target. Our theory
is illustrated with a calculation of the energy loss per unit path length of slow antiprotons moving in a uniform
electron gas, which shows good agreement with a fully nonlinear self-consistent Hartree calculation. Since
available self-consistent calculations are restricted to low heavy-projectile velocities, we expect our theory to
have applications to a variety of processes where nonlinear screening plays an important role.
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The interaction of external charges with solid targets is a In the case of few-body scattering, variational methods of
problem of both fundamental and practical interest in conthe Schwinger type are known to provide nonperturbative
temporary physic? Since the targets of interest, either bulk representations of the collision matf&which in the case of
solids, surfaces, or structures of lower dimension, typicallythe scattering of external charges would not be restricted to
consist of many interacting electrons, a remarkable progreggy velocities and heavy projectiles. However, the direct ap-
has been achieved along the lines of the so-called dielectri}gncation of these methods to solid targets composed with a
perturbative formulation of scattering. This formulation uti- large number of electrons is not feasible, since it requires the

lizes density-response functions of many-body systems tRnowIedge of the many-particle ground and excited states of
characterize their dynamical reaction to externalthe target

perturbations:® In thi t forward a theory that iles th
Linear-response theory provides a qualitative description,. N this paper, we put forward a theory that reconciies the
of the energy loss per unit path length of external particles ijlelectrlc formulatlion of scattering with t'h.e \(arlatlonal
chargeZ; interacting with solid targets, i.e., the so-called methqd. To dp Fh's' we |r_1troduce a m_od|f|cat|on of the
stopping powe(SP) of the solid. However, it yields SP that S_chwmger varlatlon_al principle of §catter|ng theory _to pro-
is proportional toZi and cannot, therefore, account for the V|de_a nonperturbative representatlpn of .the scattering cross
existing differences between the ranges of positive and neg&ection of external charges interacting with a many-electron
tive piong and the slowing of protons and antiprotdfsThe ~ system. This method does not require the knowledge of the
quadratic-response treatment considerably improves the dgany-particle ground and excited states of the target; in-
scription of the interaction of external charges with solidstead, only the linear and quadratic density-response func-
targets)® and yields aZ} correction to the energy loss that tions are needed, which have been previously obtained in the
accurately accounts for the measured energy loss of protorigamework of time-dependent density-functional theory
and antiprotons in the high-velocity regirté® Considerable (TDDFT).1°
progress has been achieved recently in the framework of Because of the quite general nature of this approach, it
quadratic-response theoty*?however, at low velocities this can be readily applied to the investigation of a variety of
theory is only able to quantitatively account for the strongprocesses involving the inelastic scattering of charged par-
influence of unit-charge projectilgZ,=+1) in the case of ticles by many-electron targets, such as the SP for moving
high-density targets. ions, electron and positron energy-loss spectroscopy, inelas-
Another approach to investigate the interaction of externatic low-energy electron diffraction, and hot-electron dynam-
charges with a many-electron system is based on the ordies. As our formula only requires the knowledge of the two
nary formulation of potential-scattering theory. In this lowest-order density-response functions of the target, the
approachi3-1” SP for a heavy particle is determined in the implementation of this approach has a computational cost
low-velocity limit from the knowledge of the scattering equal to that of available quadratic-response theories.
phase shifts corresponding to a static nonlinearly screened Let us consider the scattering of a charge by an arbitrary
potential. These potential-scattering calculations include alinany-electron target, in which the target is scattered between
orders in the projectile charge; however, they have the limiits ground|0) and excited|n) states. We assume that the
tation of being restricted to low velocitigs <uvg, ve being initial and final statesW;=|p;,0) and ¥=|p;,n) of the
the Fermi velocity of heavy projectiles moving in bulk ma- projectile-target interacting system contain a free particle of
terials. chargeZ,; and momentunp; andp;, respectively. According
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to the bilinear form of the Schwinger variational principfe, In order to obtain the fractional form of the global varia-
the functional tional principle, we first apply the substitutiof2) to the
o . _ . functional (5), and we then approximate the trial functions
[Tri] = (WFIVIW) + (P VW) = (WEV = VG VIT) by the free states. Hence, the problem reduces to finding the

(1) stationary value of the functional

is stationary under the variation of the triahknown eigen- [do/dk] = 167v
states¥; and ¥ of the full interacting Hamiltonian and at o 212
its stationary point gives thexacttransition-matrix elements xnz [(A+B~- AB)Tin; + ABT(fn,i| 3w = wno)
between théknown) initial W; and finalV; states. Her&/ is
the Coulomb interaction between the projectile and the tar- (6)
get andG." is the Green function associated to the Hamil-yy: iati i

! 0 i . =with respect to the variational parametéreindB. Equation
tonian of the projectile-target system without the mutual in-(g) can be rewritten as
teractionV.

The fractional form of the Schwinger variational principle [do7dk]=(A+B - AB)’R, + AB(A+ B - AB)R; + A’B°R;.
is obtained by substitutingsee Ref. 18, p. 412 (7)

vl — AV, V- BV, (2)  Here,R;, Ry, andR, represent contributions to the differen-
tial cross section that are proportional #, Z3, and Z3,
respectively, which can be obtained from the knowledge of
the corresponding density-response functions of the target, as
shown in Ref. 12.

T =TI -TEmY), (3) In what follows, we neglect the last term of E{) (see

the discussion below Solving the variational problem for
where T{=(¥(V|¥;) and T =(¥|VG"V|¥;) represent the function of Eq.(7) with respect to the parametetsand
the first two Born transition amplitudes. B, we find its stationary value as
Equation(3) has proven very useful in atomic scattering, _

where the|0) and |n) states of the target can be known, at dofdk = Rpf(R/R,)., (8)
least approximately. However, in the case of solid targets thevhere
many-body ground and excited states are difficult to know. In _
order to find a representation of the scattering cross section 100 =[16 - 3%~ 56¢ + 72 = 27"+ (2 = x)(4 - 4
of external charges interacting with a many-electron system +9x?)%/2)/32(1 - x)3. )
in terms of density-response functions, which can be calcu- _ .
lated from the knowledge of one-electron states, we first conEduation(8) is the global analog of the local E(). If the
struct the differential cross section for the projectile to bedUantity x=Rs/R, is small, we may expand the expression

scattered between the free-particle states of momertad (9 @nd obtain

in Eq. (1) and treating the coefficiens andB as variational
parameters. If one then returns to Ef)) and uses the free
statesW; ; for the trial functions, one finds

p-k (we use atomic units throughotit do/dk =Ry + Rg+ -+, (10)
do/dk = (16774/,))2 I Ttniol28(w = wno), (4) which agrees with the Born series through second order in
n ' the interaction between the projectile and the target.

. . In the case of antiproton&Z;=-1) moving slowly in a
where the sum is extended over a complete set of elgenstatrensetal theZ® contribution to the scattering cross sectig
of the target,w,y are the excitation energies of the target, ' 1 9

w=k -v—k2/2M. M is the projectile mass, and=p/M is the which is negati_\{e, é:an overcome for Iow-density metallic
projectile initial velocity. We then introduce the functional targgts the p03|t.|v€1 contr|but.|on R, the(eby leading tq a
physically meaningless negative scattering cross section. In
[do/dk] = (167%v) >, (W, V[ Wio) + (W[ V|WH) = (W [V contrast, our nonperturbative differential cross sect®nis
n positively defined, as shown in Fig. 1 where the functiog
+ + of Eq. (9) is plotted.
= VGV 8w = wro), (5) We illustrate our theory with a calculation of the SP
we compare this functional with that of Efl), and noting [-(dE/dx)] for slow protons and antiprotons moving in a
that a linear combination of the squares of the absolute valugniform electron gasEG) of densityn, characterized by the
of a stationary quantity is a stationary quantity, we concludedensity parametelrsz(3/41-r)n51’3. At low velocities the
that the functional of Eq(5) gives theexactcross section of projectile-target Coulomb interaction is relatively strong, so
Eq. (4) at its stationary point with respect to the variation of this represents an unfavorable situation for a linear or qua-
the trial statesPj, and ¥;,. The variational principle based dratic perturbative approach.
on the functional of Eq(5) is the “global” analog'summed The SP is obtained by multiplying the differential cross
over all final states of the targedf the corresponding “local” section (do/dk) by the energy transfew and integrating
variational principle based on the functional of Ed) for ~ over the momentum transfér. As the massv of our pro-
the transition to a particular state. These two principles argectile is much larger than the electron masas;-k-v and
both exact and equivalent to each other. one writes
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the electron density decreases, a correct description of non-
linear interactions requires to go beyond quadratic-response
theory.

In the case of antiprotons, quadratic-response calculations
(lower dashed line of Fig.)2overestimate the negative non-
linear contribution to the SRPsee also Fig. )1 which for
r<=>5.5 becomes larger in magnitude than the Iine@)
term. In contrast, the variational SBwer thick solid ling is
positive for all electron densities and shows good agreement
with the fully nonlinear potential-scattering calculation that
we have performed by solving self-consistently the Hartree
equation of a static antiprotofchained line with circles
Since the Hartree SP is obtained from accurate phase-shift
calculations to all orders id;, the agreement between varia-
tional and Hartree calculations gives us confidence in the
o ) accurateness of the variational approach.

FIG. 1. f(x) of Eq. (9) (solid line). If x is small then In the case of protons, our variational $@pper thick
f(x)=1+x+... (dashed ling which yields Eq.(10). solid line of Fig. 2 overestimates the potential-scattering

self-consistent Hartree calculation&chained line with
squarep even more than within quadratic-response theory
—dE/dXZ(llﬂ)fde -k(da/dk), (11)  (upper dashed line This is because in its presefinitial)
form our theory is only applicable to point charges that do
ghot support bound states or resonarféeBrotons in a uni-
form EG are known to support either a bound stéae

where() is the normalization volume. We have evaluated th

differential cross section of Eq8) from the knowledge of ) h
Ls> 2) or a resonance below the Fermi le¥&lyhich can be

the linear and quadratic density-response functions of the A .
uniform EG, which we have calculated in the random-phasénfe"ed by the behavior of our calculated scattering phase

approximation(RPA).10 For slow projectilegv <o), the SP shifts. Electrons accommodated in either a bound state or a
is found to be proportional to the projectile velocity resonance efficiently screen the projectile, thereby decreas-

In Fig. 2, the variational SP of a uniform EG for slow ing_l_trr]le Sf'_j’ as showr;)_in Fig. 2. " . oci
protons and antiprotor(shick solid lineg is compared to the e first unambiguous evidence for ~a velocity-

corresponding quadratic $Bbtained from Eq(10)] (dashed proportiona}l electronic SP of solid targets has been reportgd
lines) and accurate fully nonlinear potential-scattering Ca|cu_recently,_ W'th measurement% of the energy loss of slow anti-
rotons in Ni, Au, C, and A?.® At low velocities, the energy

lations that we have carried out along the lines of Refs. 1 ' ; ; X :
oss of ions in metals is mainly due to the slowing by valence

and 15 but with exchange-correlatiéxc) excluded(chained . ; . )

lines). In the high-density limit(rs—0), the Born series e:‘e;taﬂﬂz'r nvzhécc?zgar:ar?seaF\)/\E)eroﬁg\?:taelgods;(t:tl%eﬁ]Vl\élitg t;?hlfe
quickly converges and all calculations coincide. However, a riction coefficients 4dE/dx)/v obtained from the Slow-
antiproton energy-loss measurements of Refs. 5 and 6, at
rs=1.20, 1.35, 1.53, and 2.07, corresponding to the average
density of valence &4s?, 5d'%s!, 2s?2p?, and 3°3p’ elec-
trons in Ni, Au, C, and Al, respectively. The variational and
Hartree calculations for antiprotons are considerably closer
to experimentsolid circles than their quadratic counterpart.
Our variational calculations for protons are also close to ex-
periment; however, this might be due to a cancelation of the
impact of bound and resonance states with the effect of xc
not included in our approach. The xc effects were included in
Refs. 13-15 in the framework of density-functional theory
(DFT),?* and they can be included in our variational proce-
dure by going beyond the RPA in the description of the
density-response functions of the solid. Work in this direc-
tion utilizing the recently obtained quadratic density-
FIG. 2. Variational(solid line3 and quadrati¢dashed linessp  '€SPonse function from TDDFT with xc inclucds now in

of a uniform EG for slow antiprotonfower curves and protons ~ Progress. - o o

(upper curvey divided by the projectile velocity, as a function of ~ Although an additional approximation of omitting the last
r The chained lines with circlésquaresrepresent fully nonlinear  term in Eq.(7) has been made, we note that by including it,
Hartree calculations for antiprotoriprotons, performed along the @ more general analytical formula for the differential cross
lines of Refs. 14 and 15 but with xc excluded. The cirdguares  section would be obtained. However, while the tefRasand
show the experimental results for antiprotgpsotons reported in  R; require the knowledge of the linear and quadratic density-
Refs. 5 and 6. response functions, respectively, which are available from

04 T T T T T
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the literature for a number of systems of physical impor-stopping power of uniform EG for slow protons and antipro-
tance,R, is related to the cubic response function, which hasons, which, in the case of antiprotons, shows good agree-
not been determined as yet. Although the generalization ofnent with fully nonlinear Hartree calculations. Our calcula-
the present theory in this_dire_c;ion is _conceptually_ :_;trqightﬁons indicate that by going beyond quadratic theory the
forward, for the sake of simplicityand implementability in 5 jational procedure considerably improves the agreement

calculations at presentve defer it until later publlcat'lons. _with recent measurements of the stopping power of Ni, C,
In conclusion, we have reported a nonperturbative varia-

tional approach to the nonlinearly screened interaction of\" and Au fpr slow antiprotons, though xc effects still need
charged particles with a many-electron system, which gerO be taken into account. In the case of protons, th_e presence
beyond the conventional linear and quadratic theories. Thi§f bound states and resonances also needs to be incorporated
approach has been developed by introducing a modificatioiito our theory. Since self-consistent Hartree calculations
of the Schwinger variational principle of scattering theory,have the limitation of being restricted to low heavy-projectile
which allows one to obtain nonperturbative scattering crosselocities(v <vg), we expect our theory to have applications
sections from the knowledge of the linear and quadratidn the investigation of a variety of processes involving the
density-response functions of the target. Our approachinelastic scattering of charges by many-electron targets.
which includes contributions to all orders in the projectile-
target Coulomb interaction and agrees with the Born series We thank P. M. Echenique and E. Zaremba for helpful
through second order, represents a considerable improvemetiscussions. V.U.N. and C.S.K. acknowledge support by the
over the quadratic theorZ3) approximation; in particular, Korea Research Foundation through Grant No. KRF-2003-
our variational differential cross section is positively defined,015-C00214. J.M.P. acknowledges partial support by the
which is known not to be the case for the quadratic theory. UPV/EHU, the Basque Hezkuntza, Unibertsitate eta Ikerketa
We have illustrated our theory with a calculation of the Saila, and the Spanish MCyT.
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