21,335 research outputs found
A comparative study of the evolution of enzymes and nucleic acids Semiannual progress report, 1 May - 30 Nov. 1967
Immunological and enzymological approaches to evolution of enzymes and nucleic acid
Interactions of technology and society: Impacts of improved airtransport. A study of airports at the grass roots
The feasibility of applying a particular conception of technology and social change to specific examples of technological development was investigated. The social and economic effects of improved airport capabilities on rural communities were examined. Factors which led to the successful implementation of a plan to construct sixty small airports in Ohio are explored and implications derived for forming public policies, evaluating air transportation development, and assessing technology
Ground-state structure of the hydrogen double vacancy on Pd(111)
We determine the ground-state structure of a double vacancy in a hydrogen
monolayer on the Pd(111) surface. We represent the double vacancy as a triple
vacancy containing one additional hydrogen atom. The potential-energy surface
for a hydrogen atom moving in the triple vacancy is obtained by
density-functional theory, and the wave function of the fully quantum hydrogen
atom is obtained by solving the Schr\"odinger equation. We find that an H atom
in a divacancy defect experiences significant quantum effects, and that the
ground-state wave function is centered at the hcp site rather than the fcc site
normally occupied by H atoms on Pd(111). Our results agree well with scanning
tunneling microscopy images.Comment: 5 pages, 3 figure
Suboptimal filtering. Part 2 - Compensation for modeling errors in orbit determination problems Final report
Compensation for dynamic and measurement model errors in real time orbit determination system
Wave Mechanics of a Two Wire Atomic Beamsplitter
We consider the problem of an atomic beam propagating quantum mechanically
through an atom beam splitter. Casting the problem in an adiabatic
representation (in the spirit of the Born-Oppenheimer approximation in
molecular physics) sheds light on explicit effects due to non-adiabatic passage
of the atoms through the splitter region. We are thus able to probe the fully
three dimensional structure of the beam splitter, gathering quantitative
information about mode-mixing, splitting ratios,and reflection and transmission
probabilities
Recommended from our members
The high school diploma examination: Relations among appraisals, emotions, and coping
Analytic approach to the evolutionary effects of genetic exchange
We present an approximate analytic study of our previously introduced model
of evolution including the effects of genetic exchange. This model is motivated
by the process of bacterial transformation. We solve for the velocity, the rate
of increase of fitness, as a function of the fixed population size, . We
find the velocity increases with , eventually saturated at an which
depends on the strength of the recombination process. The analytical treatment
is seen to agree well with direct numerical simulations of our model equations
A well-posedness theory in measures for some kinetic models of collective motion
We present existence, uniqueness and continuous dependence results for some
kinetic equations motivated by models for the collective behavior of large
groups of individuals. Models of this kind have been recently proposed to study
the behavior of large groups of animals, such as flocks of birds, swarms, or
schools of fish. Our aim is to give a well-posedness theory for general models
which possibly include a variety of effects: an interaction through a
potential, such as a short-range repulsion and long-range attraction; a
velocity-averaging effect where individuals try to adapt their own velocity to
that of other individuals in their surroundings; and self-propulsion effects,
which take into account effects on one individual that are independent of the
others. We develop our theory in a space of measures, using mass transportation
distances. As consequences of our theory we show also the convergence of
particle systems to their corresponding kinetic equations, and the
local-in-time convergence to the hydrodynamic limit for one of the models
Spin-Peierls states of quantum antiferromagnets on the lattice
We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on
the 1/5-depleted square lattice found in . The possible phases of
the quantum dimer model on this lattice are obtained by a mapping to a
quantum-mechanical height model. In addition to the ``decoupled'' phases found
earlier, we find a possible intermediate spin-Peierls phase with
spontaneously-broken lattice symmetry. Experimental signatures of the different
quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure
Explicit characterization of the identity configuration in an Abelian Sandpile Model
Since the work of Creutz, identifying the group identities for the Abelian
Sandpile Model (ASM) on a given lattice is a puzzling issue: on rectangular
portions of Z^2 complex quasi-self-similar structures arise. We study the ASM
on the square lattice, in different geometries, and a variant with directed
edges. Cylinders, through their extra symmetry, allow an easy determination of
the identity, which is a homogeneous function. The directed variant on square
geometry shows a remarkable exact structure, asymptotically self-similar.Comment: 11 pages, 8 figure
- …