33 research outputs found

    Silicon Photonics for Coherent Terahertz Generation and Detection

    Get PDF
    Silicon-plasmonic internal photoemission devices can act as photomixers for generating terahertz frequency carriers (T-waves) for transmitters (Tx), or they function as receivers (Rx) for coherently downconverting Twave signals to the baseband. In a first demonstration, we monolithically integrate a Tx and a Rx on a silicon chip and operate them in a carrier frequency range up to 1THz . With a co-integrated transmission line both components can be connected

    Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime

    Full text link
    Nonlinear interactions between ultrashort optical waveforms and solids can be used to induce and steer electric current on a femtosecond (fs) timescale, holding promise for electronic signal processing at PHz frequencies [Nature 493, 70 (2013)]. So far, this approach has been limited to insulators, requiring extremely strong peak electric fields and intensities. Here, we show all-optical generation and control of directly measurable electric current in a semiconductor relevant for high-speed and high-power (opto)electronics, gallium nitride (GaN), within an optical cycle and on a timescale shorter than 2 fs, at intensities at least an order of magnitude lower than those required for dielectrics. Our approach opens the door to PHz electronics and metrology, applicable to low-power (non-amplified) laser pulses, and may lead to future applications in semiconductor and photonic integrated circuit technologies

    Field-effect silicon-plasmonic photodetector for coherent T-wave reception

    Get PDF
    Plasmonic internal photoemission detectors (PIPED) have recently been shown to combine compact footprint and high bandwidth with monolithic co-integration into silicon photonic circuits, thereby opening an attractive route towards optoelectronic generation and detection of waveforms in the sub-THz and THz frequency range, so-called T-waves. In this paper, we further expand the PIPED concept by introducing a metal-oxide-semiconductor (MOS) interface with an additional gate electrode that allows to control the carrier dynamics in the device and the degree of internal photoemission at the metal-semiconductor interfaces. We experimentally study the behavior of dedicated field-effect (FE-)PIPED test structures and develop a physical understanding of the underlying principles. We find that the THz down-conversion efficiency of FE-PIPED can be significantly increased when applying a gate potential. Building upon the improved understanding of the device physics, we further perform simulations and show that the gate field increases the carrier density in the conductive channel below the gate oxide to the extent that the device dynamics are determined by ultra-fast dielectric relaxation rather than by the carrier transit time. In this regime, the bandwidth can be increased to more than 1 THz. We believe that our experiments open a new path towards understanding the principles of internal photoemission in plasmonic structures, leading to PIPED-based optoelectronic signal processing systems with unprecedented bandwidth and efficiency

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials

    Silicon-plasmonic internal-photoemission detector for 40  Gbit/s data reception

    Get PDF
    Silicon-plasmonics enables the fabrication of active photonic circuits in CMOS technology with unprecedented operation speed and integration density. Regarding applications in chip-level optical interconnects, fast and efficient plasmonic photodetectors with ultrasmall footprints are of special interest. A particularly promising approach to silicon-plasmonic photodetection is based on internal photoemission (IPE), which exploits intrinsic absorption in plasmonic waveguides at the metal–dielectric interface. However, while IPE plasmonic photodetectors have already been demonstrated, their performance is still far below that of conventional high-speed photodiodes. In this paper, we demonstrate a novel class of IPE devices with performance parameters comparable to those of state-of-the-art photodiodes while maintaining footprints below 1  μm 2 . The structures are based on asymmetric metal–semiconductor–metal waveguides with a width of less than 75 nm. We measure record-high sensitivities of up to 0.12 A/W at a wavelength of 1550 nm. The detectors exhibit opto-electronic bandwidths of at least 40 GHz. We demonstrate reception of on–off keying data at rates of 40 Gbit/s

    Nanophotonic modulators and photodetectors using silicon photonic and plasmonic device concepts

    Get PDF
    Nanophotonic modulators and photodetectors are key building blocks for high-speed optical interconnects in datacom and telecom networks. Besides power efficiency and high electro-optic bandwidth, ultra-compact footprint and scalable co-integration with electronic circuitry are indispensable for highly scalable communication systems. In this paper, we give an overview on our recent progress in exploring nanophotonic modulators and photodetectors that combine the specific strengths of silicon photonic and plasmonic device concepts with hybrid integration approaches. Our work comprises electro-optic modulators that exploit silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration to enable unprecedented energy efficiency and transmission speed, as well as waveguide-based plasmonic internal photo-emission detectors (PIPED) with record-high sensitivities and bandwidths
    corecore