1,616 research outputs found
On the functional form of the metallicity-giant planet correlation
It is generally accepted that the presence of a giant planet is strongly
dependent on the stellar metallicity. A stellar mass dependence has also been
investigated, but this dependence does not seem as strong as the metallicity
dependence. Even for metallicity, however, the exact form of the correlation
has not been established. In this paper, we test several scenarios for
describing the frequency of giant planets as a function of its host parameters.
We perform this test on two volume-limited samples (from CORALIE and HARPS). By
using a Bayesian analysis, we quantitatively compared the different scenarios.
We confirm that giant planet frequency is indeed a function of metallicity.
However, there is no statistical difference between a constant or an
exponential function for stars with subsolar metallicities contrary to what has
been previously stated in the literature. The dependence on stellar mass could
neither be confirmed nor be discarded.Comment: 5 pages, 2 figures, accepted in A&
Continuous sedation until death: The everyday moral reasoning of physicians, nurses and family caregivers in the UK, The Netherlands and Belgium
Copyright © 2014 Raus et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.Background - Continuous sedation is increasingly used as a way to relieve symptoms at the end of life. Current research indicates that some physicians, nurses, and relatives involved in this practice experience emotional and/or moral distress. This study aims to provide insight into what may influence how professional and/or family carers cope with such distress.
Methods - This study is an international qualitative interview study involving interviews with physicians, nurses, and relatives of deceased patients in the UK, The Netherlands and Belgium (the UNBIASED study) about a case of continuous sedation at the end of life they were recently involved in. All interviews were transcribed verbatim and analysed by staying close to the data using open coding. Next, codes were combined into larger themes and categories of codes resulting in a four point scheme that captured all of the data. Finally, our findings were compared with others and explored in relation to theories in ethics and sociology.
Results - The participants’ responses can be captured as different dimensions of ‘closeness’, i.e. the degree to which one feels connected or ‘close’ to a certain decision or event. We distinguished four types of ‘closeness’, namely emotional, physical, decisional, and causal. Using these four dimensions of ‘closeness’ it became possible to describe how physicians, nurses, and relatives experience their involvement in cases of continuous sedation until death. More specifically, it shined a light on the everyday moral reasoning employed by care providers and relatives in the context of continuous sedation, and how this affected the emotional impact of being involved in sedation, as well as the perception of their own moral responsibility.
Conclusion - Findings from this study demonstrate that various factors are reported to influence the degree of closeness to continuous sedation (and thus the extent to which carers feel morally responsible), and that some of these factors help care providers and relatives to distinguish continuous sedation from euthanasia.The Economic and Social Research
Council (UK), the Research Foundation Flanders
(BE), the Flemish Cancer Association (BE), the Research Council of Ghent
University (BE), the Netherlands Organization for Scientific Research (NL) and
the Netherlands Organization for Health Research and Development (NL)
Beyond Node Degree: Evaluating AS Topology Models
This is the accepted version of 'Beyond Node Degree: Evaluating AS Topology Models', archived originally at arXiv:0807.2023v1 [cs.NI] 13 July 2008.Many models have been proposed to generate Internet Autonomous System (AS) topologies, most of which make structural assumptions about the AS graph. In this paper we compare AS topology generation models with several observed AS topologies. In contrast to most previous works, we avoid making assumptions about which topological properties are important to characterize the AS topology. Our analysis shows that, although matching degree-based properties, the existing AS topology generation models fail to capture the complexity of the local interconnection structure between ASs. Furthermore, we use BGP data from multiple vantage points to show that additional measurement locations significantly affect local structure properties, such as clustering and node centrality. Degree-based properties, however, are not notably affected by additional measurements locations. These observations are particularly valid in the core. The shortcomings of AS topology generation models stems from an underestimation of the complexity of the connectivity in the core caused by inappropriate use of BGP data
Anatomy of the Third-Party Web Tracking Ecosystem
The presence of third-party tracking on websites has become customary. However, our understanding of the third-party ecosystem is still very rudimentary. We examine third-party trackers from a geographical perspective, observing the third-party tracking ecosystem from 29 countries across the globe. When examining the data by region (North America, South America, Europe, East Asia, Middle East, and Oceania), we observe significant geographical variation between regions and countries within regions. We find trackers that focus on specific regions and countries, and some that are hosted in countries outside their expected target tracking domain. Given the differences in regulatory regimes between jurisdictions, we believe this analysis sheds light on the geographical properties of this ecosystem and on the problems that these may pose to our ability to track and manage the different data silos that now store personal data about us all
New and updated stellar parameters for 71 evolved planet hosts. On the metallicity - giant planet connection
It is still being debated whether the well-known metallicity - giant planet
correlation for dwarf stars is also valid for giant stars. For this reason,
having precise metallicities is very important. Different methods can provide
different results that lead to discrepancies in the analysis of planet hosts.
To study the impact of different analyses on the metallicity scale for evolved
stars, we compare different iron line lists to use in the atmospheric parameter
derivation of evolved stars. Therefore, we use a sample of 71 evolved stars
with planets. With these new homogeneous parameters, we revisit the metallicity
- giant planet connection for evolved stars. A spectroscopic analysis based on
Kurucz models in local thermodynamic equilibrium (LTE) was performed through
the MOOG code to derive the atmospheric parameters. Two different iron line
list sets were used, one built for cool FGK stars in general, and the other for
giant FGK stars. Masses were calculated through isochrone fitting, using the
Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the
metallicity distributions of various different samples of evolved stars and red
giants. All parameters compare well using a line list set, designed
specifically for cool and solar-like stars to provide more accurate
temperatures. All parameters derived with this line list set are preferred and
are thus adopted for future analysis. We find that evolved planet hosts are
more metal-poor than dwarf stars with giant planets. However, a bias in giant
stellar samples that are searched for planets is present. Because of a colour
cut-off, metal-rich low-gravity stars are left out of the samples, making it
hard to compare dwarf stars with giant stars. Furthermore, no metallicity
enhancement is found for red giants with planets (\,dex) with
respect to red giants without planets.Comment: 22 pages, 10 figures, 12 tables, accepted to A&
New and updated stellar parameters for 90 transit hosts. The effect of the surface gravity
Context. Precise stellar parameters are crucial in exoplanet research for
correctly determining of the planetary parameters. For stars hosting a
transiting planet, determining of the planetary mass and radius depends on the
stellar mass and radius, which in turn depend on the atmospheric stellar
parameters. Different methods can provide different results, which leads to
different planet characteristics.}%Spectroscopic surface gravities have shown
to be poorly constrained, but the photometry of the transiting planet can
provide an independent measurement of the surface gravity.
Aims. In this paper, we use a uniform method to spectroscopically derive
stellar atmospheric parameters, chemical abundances, stellar masses, and
stellar radii for a sample of 90 transit hosts. Surface gravities are also
derived photometrically using the stellar density as derived from the light
curve. We study the effect of using these different surface gravities on the
determination of the chemical abundances and the stellar mass and radius.
Methods. A spectroscopic analysis based on Kurucz models in LTE was performed
through the MOOG code to derive the atmospheric parameters and the chemical
abundances. The photometric surface gravity was determined through isochrone
fitting and the use of the stellar density, directly determined from the light
curve. Stellar masses and radii are determined through calibration formulae.
Results. Spectroscopic and photometric surface gravities differ, but this has
very little effect on the precise determination of the stellar mass in our
spectroscopic analysis. The stellar radius, and hence the planetary radius, is
most affected by the surface gravity discrepancies. For the chemical
abundances, the difference is, as expected, only noticable for the abundances
derived from analyzing of lines of ionized species.Comment: 12 pages, 6 figures, 5 tables, accepted to A&
A new analysis of the WASP-3 system: no evidence for an additional companion
In this work we investigate the problem concerning the presence of additional
bodies gravitationally bounded with the WASP-3 system. We present eight new
transits of this planet and analyse all the photometric and radial velocity
data published so far. We did not observe significant periodicities in the
Fourier spectrum of the observed minus calculated (O-C) transit timing and
radial velocity diagrams (the highest peak having false-alarm probabilities of
56 per cent and 31 per cent, respectively) or long-term trends. Combining all
the available information, we conclude that the radial velocity and transit
timing techniques exclude, at 99 per cent confidence limit, any perturber more
massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of
the inner planet. We also investigate the possible presence of an exomoon on
this system and determined that considering the scatter of the O-C transit
timing residuals a coplanar exomoon would likely produce detectable transits.
This hypothesis is however apparently ruled out by observations conducted by
other researchers. In case the orbit of the moon is not coplanar the accuracy
of our transit timing and transit duration measurements prevents any
significant statement. Interestingly, on the basis of our reanalysis of SOPHIE
data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more
active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the
observations. Despite no clear spot crossing has been reported for this system,
this analysis claims for a more intensive monitoring of the activity level of
this star in order to understand its impact on photometric and radial velocity
measurements.Comment: MNRAS accepted (14/08/2012
SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs I. New atmospheric parameters and masses for 48 stars with planets
Due to the importance that the star-planet relation has to our understanding
of the planet formation process, the precise determination of stellar
parameters for the ever increasing number of discovered extra-solar planets is
of great relevance. Furthermore, precise stellar parameters are needed to fully
characterize the planet properties. It is thus important to continue the
efforts to determine, in the most uniform way possible, the parameters for
stars with planets as new discoveries are announced. In this paper we present
new precise atmospheric parameters for a sample of 48 stars with planets. We
then take the opportunity to present a new catalogue of stellar parameters for
FGK and M stars with planets detected by radial velocity, transit, and
astrometry programs. Stellar atmospheric parameters and masses for the 48 stars
were derived assuming LTE and using high resolution and high signal-to-noise
spectra. The methodology used is based on the measurement of equivalent widths
for a list of iron lines and making use of iron ionization and excitation
equilibrium principles. For the catalog, and whenever possible, we used
parameters derived in previous works published by our team, using well defined
methodologies for the derivation of stellar atmospheric parameters. This set of
parameters amounts to over 65% of all planet host stars known, including more
than 90% of all stars with planets discovered through radial velocity surveys.
For the remaining targets, stellar parameters were collected from the
literature.Comment: Astronomy & Astrophysics, accepted for publicatio
- …