1,282 research outputs found

    On a quadratic functional for scalar conservation laws

    Get PDF
    We prove a quadratic interaction estimate for approximate solutions to scalar conservation laws obtained by the wavefront tracking approximation or the Glimm scheme. This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm scheme. The proof is based on the introduction of a quadratic functional (t), decreasing at every interaction, and such that its total variation in time is bounded. Differently from other interaction potentials present in the literature, the form of this functional is the natural extension of the original Glimm functional, and coincides with it in the genuinely nonlinear case

    Quadratic interaction functional for systems of conservation laws: a case study

    Get PDF
    We prove a quadratic interaction estimate for wavefront approximate solutions to the triangular system of conservation laws {ut+f~(u,v)x=0,vtvx=0. \left\{ \begin{array}{c} u_t + \tilde f(u,v)_x = 0, \\ v_t - v_x = 0. \end{array} \right. This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm scheme \cite{anc_mar_11_CMP}. Our aim is to extend the analysis, done for scalar conservation laws \cite{bia_mod_13}, in the presence of transversal interactions among wavefronts of different families. The proof is based on the introduction of a quadratic functional Q(t)\mathfrak Q(t), decreasing at every interaction, and such that its total variation in time is bounded. %cancellations it variation is controlled by the total variation growths at most of the total variation of the solution multiplied by the amount of cancellation. The study of this particular system is a key step in the proof of the quadratic interaction estimate for general systems: it requires a deep analysis of the wave structure of the solution (u(t,x),v(t,x))(u(t,x),v(t,x)) and the reconstruction of the past history of each wavefront involved in an interaction

    Nanoparticle characterization: What to measure?

    No full text
    What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure–function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real‐world applications

    Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites

    Get PDF
    Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than 10510^{-5} g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another example. In this case the sensitivity is quite poor and a short discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1

    Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors

    Get PDF
    The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect, studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10410^{-4} grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de Janeiro 201

    COMPARISON OF RENALGUARD SYSTEM, CONTINUOUS VENOVENOUS HEMOFILTRATION AND HYDRATION IN HIGH-RISK PATIENTS FOR CONTRAST-INDUCED NEPHROPATHY

    Get PDF
    Contrast-induced nephropathy (CIN) is a relatively frequent complication of percutaneous coronary and peripheral artery interventions and is associated with significant in-hospital and long term morbidity and mortality. We aim to compare the impact on major events of RenalGuard system (RG), continuous veno-venous Hemofiltration (CVVH) and hydration (Hy) with sodium bicarbonate plus N-acetylcysteine in patients with severe renal failure

    Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS

    Full text link
    We performed a search for short gravitational wave bursts using about 3 years of data of the resonant bar detectors Nautilus and Explorer. Two types of analysis were performed: a search for coincidences with a low background of accidentals (0.1 over the entire period), and the calculation of upper limits on the rate of gravitational wave bursts. Here we give a detailed account of the methodology and we report the results: a null search for coincident events and an upper limit that improves over all previous limits from resonant antennas, and is competitive, in the range h_rss ~1E-19, with limits from interferometric detectors. Some new methodological features are introduced that have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure

    Experimental evaluation of a solid oxide fuel cell system exposed to inclinations and accelerations by ship motions

    Get PDF
    Solid Oxide Fuel Cell (SOFC) systems have the potential to reduce emissions from seagoing vessels. However, it is unknown whether ship motions influence the system's operation. In this research, a 1.5 kW SOFC module is operated on an inclination platform that emulates ship motions, to evaluate the influence of static and dynamic inclinations on the system's safety, operation, and lifetime. The test campaign consists of a static inclination test, a dynamic test, a degradation test, and a high acceleration test. There were no interruptions in the power supply during the different tests, and no detectable gas leakages or safety hazards. Although the SOFC does not fail in any test condition, dynamic inclinations result in forced oscillations in the fuel regulation, which propagate through the system by different feedback loops in the control architecture, leading to significant deviations in the operational parameters of the system. Additionally, for motion periods from 16 to 26 s, reoccurring exceedance of the fuel utilisation results in a gradual reduction of the power supply. Several enhancements are recommended to improve the design of SOFCs and marine fuel cell regulations to ensure their safe operation on ships.</p

    Renalguard, hemofiltration and hydration in prevention of contrast induced nephropathy in patients with severe chronic kidney disease undergoing percutaneous vascular interventions

    Get PDF
    Contrast-induced nephropathy (CIN) is a frequent complication of percutaneous coronary and peripheral artery interventions and is associated with significant in-hospital and long-term morbidity and mortality. We aim to compare the impact on major events of RenalGuard system(RG), continuous veno-venous Hemofiltration (CVVH) and hydration (Hy) with sodium bicarbonate plus N-acetylcysteine in patients with severe renal failure

    Oropouche Virus Infection And Pathogenesis Are Restricted By Mavs, Irf-3, Irf-7, And Type I Interferon Signaling Pathways In Nonmyeloid Cells

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), beta interferon (IFN-beta), or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR than in wild-type (WT) cells. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death, whereas WT congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or a selective (flox/flox) deletion La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV infection and tissue injury and suggest that IFN signaling in nonmyeloid cells contributes to the host defense against orthobunyaviruses.89947204737National Institutes of Health [R01 AI104972, P30 DK52574]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)University Research Committee grantConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq [246513/2012-8
    corecore