460 research outputs found

    Orthogonal halogen and hydrogen bonds involving a peptide bond model

    Get PDF
    The peptide bond model N-methylacetamide self-assembles with a range of dihalotetrafluorobenzenes forming co-crystals that all show the occurrence of orthogonal hydrogen and halogen bonds

    Transmembrane anion transport mediated by halogen-bond donors

    Get PDF
    In biology and chemistry, the transport of anions across lipid bilayer membranes is usually achieved by sophisticated supramolecular architectures. Significant size reduction of transporters is hampered by the intrinsically hydrophilic nature of typical anion-binding functionalities, hydrogen-bond donors or cations. To maximize the atom efficiency of anion transport, the hydrophobic nature, directionality, and strength of halogen bonds seem promising. Unlike the ubiquitous, structurally similar hydrogen bonds, halogen bonds have not been explored for anion transport. Here we report that transport across lipid bilayers can be achieved with small perfluorinated molecules that are equipped with strong halogen-bond donors. Transport is observed with trifluoroiodomethane (boiling point=−22 °C); that is, it acts as a 'single-carbon' transporter. Contrary to the destructive action of small-molecule detergents, transport with halogen bonds is leakage-free, cooperative, non-ohmic and highly selective, with anion/cation permeability ratios <37

    Halogen versus

    Full text link

    Dynamic Characterization of Crystalline Supramolecular Rotors Assembled through Halogen Bonding

    Get PDF
    A modular molecular kit for the preparation of crystalline molecular rotors was devised from a set of stators and rotators to gain simple access to a large number of structures with different dynamic performance and physical properties. In this work, we have accomplished this with crystalline molecular rotors self-assembled by halogen bonding of diazabicyclo[2.2.2]octane, acting as a rotator, and a set of five fluorine-substituted iodobenzenes that take the role of the stator. Using variableerature 1H T1 spin-lattice relaxation measurements, we have shown that all structures display ultrafast Brownian rotation with activation energies of 2.4-4.9 kcal/mol and pre-exponential factors of the order of (1-9) × 1012 s-1. Line shape analysis of quadrupolar echo 2H NMR measurements in selected examples indicated rotational trajectories consistent with the 3-fold or 6-fold symmetric potential of the rotator

    Fluorine-induced J-aggregation enhances emissive properties of a new NLO push–pull chromophore

    Get PDF
    A new fluorinated push–pull chromophore with good second-order NLO properties even in concentrated solution shows solid state intermolecular aryl–fluoroaryl interactions leading to J-aggregates with intense solid state luminescence

    (2E)-1-(1,3-Benzodioxol-5-yl)-3-(2-bromo­phen­yl)prop-2-en-1-one

    Get PDF
    The mol­ecule of the title compound, C16H11BrO3, is essentially planar with a maximum deviation of 0.178 (4) Å and the configuration of the keto group with respect to the olefinic double bond is typically s-cis. In the crystal structure, inter­molecular Br⋯O inter­actions [3.187 (3)Å] give rise to chains parallel to the b axis. Adjacent chains are further linked along the a axis by C—H⋯π inter­actions. The crystal studied was a racemic twin with a 0.595 (13):0.405 (13) ratio

    Supramolecular amplification of amyloid self-assembly by iodination

    Get PDF
    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents

    Supramolecular amplification of amyloid self-assembly by iodination

    Get PDF
    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents

    Anisotropic Charge Distribution and Anisotropic van der Waals Radius Leading to Intriguing Anisotropic Noncovalent Interactions

    Get PDF
    Although group (IV-VII) nonmetallic elements do not favor interacting with anionic species, there are counterexamples including the halogen bond. Such binding is known to be related to the charge deficiency because of the adjacent atom&apos;s electron withdrawing effect, which creates s/p-holes at the bond-ends. However, a completely opposite behavior is exhibited by N-2 and O-2, which have electrostatically positive/negative character around cylindrical-bond-surface/bond-ends. Inspired by this, here we elucidate the unusual features and origin of the anisotropic noncovalent interactions in the ground and excited states of the 2nd and 3rd row elements belonging to groups IV-VII. The anisotropy in charge distributions and van der Waals radii of atoms in such molecular systems are scrutinized. This provides an understanding of their unusual molecular configuration, binding and recognition modes involved in new types of molecular assembling and engineering. This work would lead to the design of intriguing molecular systems exploiting anisotropic noncovalent interactions.open
    corecore