9 research outputs found

    MBOAT7 in liver and extrahepatic diseases

    Get PDF
    MBOAT7 is a protein anchored to endomembranes by several transmembrane domains. It has a catalytic dyad involved in remodelling of phosphatidylinositol with polyunsaturated fatty acids. Genetic variants in the MBOAT7 gene have been associated with the entire spectrum of non-alcoholic fatty liver (NAFLD), recently redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) and, lately, steatotic liver disease (SLD), and to an increasing number of extrahepatic conditions. In this review, we will (a) elucidate the molecular mechanisms by which MBOAT7 loss-of-function predisposes to MAFLD and neurodevelopmental disorders and (b) discuss the growing number of genetic studies linking MBOAT7 to hepatic and extrahepatic diseases. MBOAT7 complete loss of function causes severe changes in brain development resulting in several neurological manifestations. Lower MBOAT7 hepatic expression at both the mRNA and protein levels, due to missense nucleotide polymorphisms (SNPs) in the locus containing the MBOAT7 gene, affects specifically metabolic and viral diseases in the liver from simple steatosis to hepatocellular carcinoma, and potentially COVID-19 disease. This body of evidence shows that phosphatidylinositol remodelling is a key factor for human health

    Molecular analysis of three known and one novel LPL variants in patients with type I hyperlipoproteinemia.

    Get PDF
    Abstract Background and aims Type I hyperlipoproteinemia, also known as familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disorder caused by variants in LPL, APOC2, APOA5, LMF1 or GPIHBP1 genes. The aim of this study was to identify novel variants in the LPL gene causing lipoprotein lipase deficiency and to understand the molecular mechanisms. Methods and results A total of 3 individuals with severe hypertriglyceridemia and recurrent pancreatitis were selected from the Lipid Clinic at Sahlgrenska University Hospital and LPL was sequenced. In vitro experiments were performed in human embryonic kidney 293T/17 (HEK293T/17) cells transiently transfected with wild type or mutant LPL plasmids. Cell lysates and media were used to analyze LPL synthesis and secretion. Media were used to measure LPL activity. Patient 1 was compound heterozygous for three known variants: c.337T > C (W113R), c.644G > A (G215E) and c.1211T > G (M404R); patient 2 was heterozygous for the known variant c.658A > C (S220R) while patient 3 was homozygous for a novel variant in the exon 5 c.679G > T (V227F). All the LPL variants identified were loss-of-function variants and resulted in a substantial reduction in the secretion of LPL protein. Conclusion We characterized at the molecular level three known and one novel LPL variants causing type I hyperlipoproteinemia showing that all these variants are pathogenic

    The effects of covid-19 on the eating habits of children and adolescents in italy: A pilot survey study

    No full text
    Nutrition during childhood and adolescence is very important for growth and can have long-term health implications. The COVID-19 lockdown caused significant changes in everyday life, including in children and adolescents. This study evaluated the effects of the first COVID-19 lockdown on eating habits and body weight in children and adolescents. An online cross-sectional survey was carried out among the parents of children (5–9 years) and adolescents (10–14 years) living in Italy. The online self-administered questionnaire included demographic and anthropometric data (reported weight and height) weight and dietary habit changes during the COVID-19 lockdown in Italy (March to June 2020). A total of 439 participants were included. We found a change in eating habits with an increase in consumption of sweet packaged snacks (34%) and processed meat (25%), as well as bread, pizza and bakery products (47%). We also found an increase in vegetable, fresh fruit and legume intake (19%), and a reduction in sweet beverage and candy intake. A total of 59.7% of the participants reported body weight gain, with adolescents gaining more than children (67% vs. 55%, p = 0.010, respectively). In children, body weight gain was associated with a change in body height and increased consumption of dairy products and sweet packaged snacks, while in adolescents it was associated with an increased intake of comfort foods and processed meat. Our data highlighted the need to carefully monitor eating behaviors to avoid the establishment of unhealthy eating habits and prevent obesity in children and adolescents during periods of self-isolation

    Molecular analysis of three known and one novel LPL variants in patients with type I hyperlipoproteinemia

    No full text
    Background and aims: Type I hyperlipoproteinemia, also known as familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disorder caused by variants in LPL, APOC2, APOA5, LMF1 or GPIHBP1 genes. The aim of this study was to identify novel variants in the LPL gene causing lipoprotein lipase deficiency and to understand the molecular mechanisms. Methods and results: A total of 3 individuals with severe hypertriglyceridemia and recurrent pancreatitis were selected from the Lipid Clinic at Sahlgrenska University Hospital and LPL was sequenced. In vitro experiments were performed in human embryonic kidney 293T/17 (HEK293T/17) cells transiently transfected with wild type or mutant LPL plasmids. Cell lysates and media were used to analyze LPL synthesis and secretion. Media were used to measure LPL activity. Patient 1 was compound heterozygous for three known variants: c.337T > C (W113R), c.644G > A (G215E) and c.1211T > G (M404R); patient 2 was heterozygous for the known variant c.658A > C (S220R) while patient 3 was homozygous for a novel variant in the exon 5 c.679G > T (V227F). All the LPL variants identified were loss-of-function variants and resulted in a substantial reduction in the secretion of LPL protein. Conclusion: We characterized at the molecular level three known and one novel LPL variants causing type I hyperlipoproteinemia showing that all these variants are pathogenic

    Lycopene and bone: An in vitro investigation and a pilot prospective clinical study

    No full text
    Background: There are several effective therapies for osteoporosis but these agents might cause serious adverse events. Lycopene intake could prevent bone loss, however studies on its effects on bone are scarce. Our aim was to investigate the effects of lycopene on osteoblast cells as well as bone mineral density and bone turnover markers in postmenopausal women. Methods: We investigated the effect of lycopene on the Wnt/\u3b2-catenin and ERK 1/2 pathways, RUNX2, alkaline phosphatase, RANKL and COL1A of Saos-2. We also carried out a pilot controlled clinical study to verify the feasibility of an approach for bone loss prevention through the intake of a lycopene-rich tomato sauce in 39 postmenopausal women. Results: Lycopene 10 \u3bcM resulted in higher \u3b2-catenin and phERK1/2 protein Vs the vehicle (p = 0.04 and p = 0.006). RUNX2 and COL1A mRNA was induced by both 5 and 10 \u3bcM doses (p = 0.03; p = 0.03 and p = 0.03; p = 0.05) while RANKL mRNA was reduced (p < 0.05). A significant bone density loss was not detected in women taking the tomato sauce while the control group had bone loss (p = 0.002). Tomato sauce intake resulted in a greater bone alkaline phosphatase reduction than the control (18% vs 8.5%, p = 0.03). Conclusions: Lycopene activates the WNT/\u3b2-catenin and ERK1/2 pathways, upregulates RUNX2, alkaline phosphatase, COL1A and downregulates RANKL Saos-2. These processes contributed to prevent bone loss in postmenopausal women

    Liver transcriptomics highlights interleukin-32 as novel NAFLD-related cytokine and candidate biomarker

    No full text
    Objective: Efforts to manage non-alcoholic fatty liver disease (NAFLD) are limited by the incomplete understanding of the pathogenic mechanisms and the absence of accurate non-invasive biomarkers. The aim of this study was to identify novel NAFLD therapeutic targets andbiomarkers by conducting liver transcriptomic analysis in patients stratified by the presence of the PNPLA3 I148M genetic risk variant. Design: We sequenced the hepatic transcriptome of 125 obese individuals. 'Severe NAFLD' was defined as the presence of steatohepatitis, NAFLD activity score 654 or fibrosis stage 652. The circulating levels of the most upregulated transcript, interleukin-32 (IL32), were measured by ELISA. Results: Carriage of the PNPLA3 I148M variant correlated with the two major components of hepatic transcriptome variability and broadly influenced gene expression. In patients with severe NAFLD, there was an upregulation of inflammatory and lipid metabolism pathways. IL32 was the most robustly upregulated gene in the severe NAFLD group (adjusted p=1 710-6), and its expression correlated with steatosis severity, both in I148M variant carriers and non-carriers. In 77 severely obese, and in a replication cohort of 160 individuals evaluated at the hepatology service, circulating IL32 levels were associated with both NAFLD and severe NAFLD independently of aminotransferases (p&lt;0.01 for both). A linear combination of IL32-ALT-AST showed a better performance than ALT-AST alone in NAFLD diagnosis (area under the curve=0.92 vs 0.81, p=5 710-5). Conclusion: Hepatic IL32 is overexpressed in NAFLD, correlates with hepatic fat and liver damage, and is detectable in the circulation, where it is independently associated with the presence and severity of NAFLD

    Effects of C-Peptide Replacement Therapy on Bone Microarchitecture Parameters in Streptozotocin-Diabetic Rats

    No full text
    C-peptide therapy protects against diabetic micro- and macrovascular damages and neuropatic complications. However, to date, the role of C-peptide in preventing diabetes-related bone loss has not been investigated. Our aim was to evaluate if C-peptide infusion improves bone quality in diabetic rats. Twenty-three male Wistar rats were randomly divided into three groups: normal control group; sham diabetic control group; diabetic plus C-peptide group. Diabetes was induced by streptozotocin injection and C-peptide was delivered subcutaneously for 6\ua0weeks. We performed micro-CT and histological testing to assess several trabecular microarchitectural parameters. At the end, diabetic plus C-peptide rats had a higher serum C-peptide (p = 0.02) and calcium (p = 0.04) levels and tibia weight (p = 0.02) than the diabetic control group. The diabetic plus C-peptide group showed a higher trabecular thickness and cross-sectional thickness than the diabetic control group (p = 0.01 and p = 0.03). Both the normal control and diabetic plus C-peptide groups had more Runx-2 and PLIN1 positive cells in comparison with the diabetic control group (p = 0.045 and p = 0.034). Diabetic rats receiving C-peptide\ua0had higher quality of trabecular bone than diabetic rats not receiving this treatment. If confirmed, C-peptide could have a role in improving bone quality in diabetes
    corecore