440 research outputs found

    ANALYSIS OF IDEAL MANEUVERS FOR MISSION EXTENSION VEHICLE

    Get PDF
    Finding optimal maneuvers between spacecraft is computationally demanding. Targeting many spacecraft successively requires more computational power than commercially available. This thesis tested algorithms looking to reduce this computational burden. Algorithms claiming optimal two-impulse rendezvous solutions between any two arbitrary orbits were coded and compared through minimum delta-vs (fuel) and computational times. Orbit characteristics were varied across a multitude of scenarios to represent many possible applications. Assorted considerations were discussed, which provided a framework for designing multi-client on-orbit servicing missions.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Do Loyalty Program Membership and Status Levels affect Service Customers' Choices?

    Full text link
    This paper examines the effects of loyalty program membership as such, and impending upgrade or downgrade to a different status level, on customer brand preferences for flights and hotels. The results show that members have a significantly higher brand preference for their respective airline or hotel group than non-members, and those close to a change in status level have an even stronger brand preference compared to those who are not, which is also reflected in their willingness to pay. The empirical findings illustrates the ability of frequent traveller programs to affect purchase choices if the customer fears that earned status benefits are about to be lost

    Excluding Nontarget Species from Brown Tree Snake, \u3ci\u3eBoiga irregularis\u3c/i\u3e (Reptilia: Colubridae), Bait Stations: Experimental Tests of Station Design and Placement

    Get PDF
    Bait stations with toxic baits are an emerging technology for eradication of the invasive brown tree snake (Boiga irregularis) on Guam, yet potential interferences by nontarget species are largely unknown. We tested the efficacies of three bait station designs together with three commonly used station support structures to exclude nonnative rats (roof rat, Rattus rattus; Norway rat, Rattus norvegicus; Polynesian rat, Rattus exulans) and native coconut crabs (Birgus latro). When directly presented, all species readily consumed the dead neonatal mouse baits (nontoxic) including those replicating decomposing baits in the field. When bait stations were made easily accessible by placement near ground level, all rat species were able to enter all station types, but some individual roof rats and Norway rats exhibited apparent neophobia. When stations were placed up on support structures, simulating those in the field (~1 m above ground level), numbers of station accessions by roof rats and Norway rats remained essentially unchanged, but Polynesian rats then showed almost no inclination to enter stations. However, ability to access entrances of stations ( but not interiors) when on support structures was extremely high for roof rats and appreciable for the other rat species, including Polynesians. The station type currently in widest use, when placed on chain-link cyclone fence, had the highest probability of accession. Crabs readily accessed station entrances but never interiors. The two downward-angled station designs, when placed in simulated vegetation, had the lowest probabilities of accession. In areas where nontarget species are a concern, we recommend use of either of the downward-angled station designs and suspension from vegetation wherever possible

    Excluding Nontarget Species from Brown Tree Snake, \u3ci\u3eBoiga irregularis\u3c/i\u3e (Reptilia: Colubridae), Bait Stations: Experimental Tests of Station Design and Placement

    Get PDF
    Bait stations with toxic baits are an emerging technology for eradication of the invasive brown tree snake (Boiga irregularis) on Guam, yet potential interferences by nontarget species are largely unknown. We tested the efficacies of three bait station designs together with three commonly used station support structures to exclude nonnative rats (roof rat, Rattus rattus; Norway rat, Rattus norvegicus; Polynesian rat, Rattus exulans) and native coconut crabs (Birgus latro). When directly presented, all species readily consumed the dead neonatal mouse baits (nontoxic) including those replicating decomposing baits in the field. When bait stations were made easily accessible by placement near ground level, all rat species were able to enter all station types, but some individual roof rats and Norway rats exhibited apparent neophobia. When stations were placed up on support structures, simulating those in the field (~1 m above ground level), numbers of station accessions by roof rats and Norway rats remained essentially unchanged, but Polynesian rats then showed almost no inclination to enter stations. However, ability to access entrances of stations ( but not interiors) when on support structures was extremely high for roof rats and appreciable for the other rat species, including Polynesians. The station type currently in widest use, when placed on chain-link cyclone fence, had the highest probability of accession. Crabs readily accessed station entrances but never interiors. The two downward-angled station designs, when placed in simulated vegetation, had the lowest probabilities of accession. In areas where nontarget species are a concern, we recommend use of either of the downward-angled station designs and suspension from vegetation wherever possible

    Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in hypervelocity impacts

    Get PDF
    Enceladus is a compelling destination for astrobiological analyses due to the presence of simple and complex organic constituents in cryovolcanic plumes that jet from its subsurface ocean. Enceladus plume capture during a flyby or orbiter mission is an appealing method for obtaining pristine ocean samples for scientific studies of this organic content because of the high science return, reduced planetary protection challenges, and lower risk and expense compared to a landed mission. However, this mission profile requires sufficient amounts of plume material for sensitive analysis. To explore the feasibility and optimization of the required capture systems, light gas gun experiments were carried out to study organic ice particle impacts on indium surfaces. An organic fluorescent tracer dye, Pacific Blue™, was dissolved in borate buffer and frozen into saline ice projectiles. During acceleration, the ice projectile breaks up in flight into micron‐sized particles that impact the target. Quantitative fluorescence microscopic analysis of the targets demonstrated that under certain impact conditions, 10–50% of the entrained organic molecules were captured in over 25% of the particle impacts. Optimal organic capture was observed for small particles (d ~ 5–15 µm) with velocities ranging from 1 to 2 km s1^{−1}. Our results reveal how organic capture efficiency depends on impact velocity and particle size; capture increases as particles get smaller and as velocity is reduced. These results demonstrate the feasibility of collecting unmodified organic molecules from the Enceladus ice plume for sensitive analysis with modern in situ instrumentation such as microfluidic capillary electrophoresis (CE) analysis with ppb organic sensitivity

    Infrared spectroscopy of phytochrome and model pigments

    Get PDF
    Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2Et8-bilindion), and protonated H2Et8-bilindion in various solvents. The spectra of the model compounds show that only for the protonated forms can clear differences between the two isomers be detected. Since considerable differences are present between the spectra of Et8-bilindion and H2Et8-bilindion, it is concluded that only the latter compound can serve as a model system of phytochrome. The 2H2O effect on the difference spectrum of phytochrome supports the view that the chromophore in red-absorbing phytochrome is protonated and suggests, in addition, that it is also protonated in far-red-absorbing phytochrome. The spectra show that protonated carboxyl groups are influenced. The small amplitudes in the difference spectra exclude major changes of protein secondary structure

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients
    corecore