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ABSTRACT 

 Finding optimal maneuvers between spacecraft is computationally demanding. 

Targeting many spacecraft successively requires more computational power than 

commercially available. This thesis tested algorithms looking to reduce this 

computational burden. Algorithms claiming optimal two-impulse rendezvous solutions 

between any two arbitrary orbits were coded and compared through minimum delta-vs 

(fuel) and computational times. Orbit characteristics were varied across a multitude of 

scenarios to represent many possible applications. Assorted considerations were 

discussed, which provided a framework for designing multi-client on-orbit servicing 

missions. 
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CHAPTER 1:
Introduction

1.1 Background
As of January 1st, 2022, there are 4,852 satellites orbiting Earth. Of these, 4,078 are in
Low Earth Orbit (LEO), 141 are in Medium Earth Orbit (MEO), 59 are in Highly Elliptical
Orbit (HEO), and 574 are in Geosynchronous Earth Orbit (GEO) [1]. The growth in space
leads to a similar trend in the concern over space logistics. In 2022, SpaceX advertised the
use of a reusable launch vehicle, the Falcon Heavy, for $97M capable of carrying 68,000
kilograms (kg) to LEO [2], equating to $1425/kg. Even with the reducing costs required to
send material to orbit, there is an apparent market to service existing spacecraft, instead of
sending an entire replacement spacecraft [3], [4].

There is a current need to service exquisite space systems to extend their life. This is
mostly due to a depletion of fuel from operating beyond the intended end of life for
the mission or from failures in replaceable or repairable components or subsystems [5].
An On-Orbit Servicing (OOS) satellite can carry fuel, parts, tools, and a robotic arm to
manipulate or deliver all of these. The Mission Extension Vehicle (MEV) produced by
Northrop Grumman [6] represents recent commercial development in this area, including
the launches of MEV-1 and MEV-2 in 2019 and 2020, respectively. Prior to missions like
these, servicing operations were performed by humans such as the ones for the Hubble
Space Telescope [4]. It wasn’t until 2007, when the Defense Advanced Research Projects
Agency (DARPA) and National Aeronautics and Space Administration (NASA) launched
Orbital Express, which was the first US mission to transfer components between spacecraft,
unassisted [7]. The result is a peaking interest in cost analysis, with the hope of savings from
servicing satellites that have fallen into disrepair or increasing flexibility in mission design
with unlimited potential for modular replacements. If OOS spacecraft were mainstreamed,
any space mission could reduce up front costs and save Size, Weight, and Power (SWaP)
due to less fuel or survivability required in design.

In addition to serviceable spacecraft, orbital debris has increased drastically with over 25,000

1
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trackable pieces over 10 cm in diameter in LEO alone [8]. Even though the atmosphere
produces enough drag at high enough altitudes to slow most of these pieces causing them
to accelerate back to Earth, models suggest that there are enough traffic and collisions to
produce more debris than atmospheric drag would remove from orbit, with potential for
exponential increase if no debris protection or mitigation measures are put in place and
followed [8]. This provides another market for OOS satellites doing debris remediation
through active debris removal.

Astrodynamics is the application of mechanics to problems derived from considering the
motion of masses in space. When considering multiple spacecraft in orbit around Earth,
it is practically relevant to consider travel between them. Intuitively, most would assume a
straight line to be the best way to do that. However, applying force to a spacecraft where
the only other force acting on it is the force of gravity from Earth is difficult to conceive
naturally, given how different the frame of reference is from our daily experience. Consider
the scenario in Figures 1.1 through 1.3, where there are two spacecraft in the same circular
orbit around Earth.

Figure 1.1. Initial Orientation of Chief and Deputy

A deputy spacecraft prepares to move to the chief.

2
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A deputy is a chaser spacecraft to which we apply another force besides gravity. What
happens if we try applying force to the deputy in the direction of the chief as most intuition
suggests? See Figure 1.2.

Figure 1.2. Second Orientation of Chief and Deputy

After force applied to deputy, its orbit changes.

Since the force applied was in the direction of the velocity, there is energy added to the
deputy’s orbit, allowing it to travel further from Earth. At the end of the instantaneous
addition of energy, in other words an impulsive burn, the deputy is in an elliptical orbit
instead of the circular and is at the orbit’s periapsis, or closest point to Earth. If we step
forward in time with no additional changes we can watch what happens in Figure 1.3.

3
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Figure 1.3. Third Orientation of Chief and Deputy

With the new orbit, the distance increases between them, instead of the intuitive decrease.

This simple demonstration illustrates the confusion the first pilots in space must have
felt when they realized applying thrust toward your target would take you further from it
and they essentially needed to apply the brakes, or thrust away from their target, in order to
accelerate towards it. In other words, slow down to speed up and speed up to slow down. This
phasing maneuver and other well understood orbital transfer problems, such as Hohmann
and coplanar elliptical, will be further explained in Chapter 3.

Much of the literature explaining mission design for OOS spacecraft has shown limitations
due to focus on simple astrodynamic scenarios or assumption of accurate algorithms. This
thesis aimed to identify non-intuitive orbital maneuvers and produced new algorithms to
compare with existing ones for locating possible inefficiencies in current operations and
filling the gap for OOS mission design for many clients by comparing increasingly complex
scenarios and computation power required for accurate algorithms.

4
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1.2 Problem
Optimal two-impulse burn rendezvous maneuvers between two orbital states were explored
using various parameters and techniques. When trying to find a brute force absolute optimal
route between all possible states (or nodes) on two arbitrary orbits, the computational power
was too burdensome to implement without a supercomputer, and would be impossible on
board a spacecraft. In planning a servicing mission for a satellite, optimal or near-optimal
routes can increase the number of satellites serviced or decrease the cost of such missions.
For several cases of orbital transfer problems, local quasi-optimal solutions were computed
by various algorithms and compared. A guide to planning an optimal route between possible
nodes was developed with traveling salesman and vehicle routing problems in mind. This
guide could fill a gap in current inefficient operational planning and computational power
allocation.

1.3 Objective
This thesis aimed to produce and compare results from applying algorithms to solving
computationally demanding sets of serial orbital maneuver problems against optimal or
quasi-optimal solutions.

1.4 Model-Based Systems Engineering
Development and presentation of this thesis was assisted by the use of Model-Based System
Engineering (MBSE), a formal approach for the use of models as the primary tool for infor-
mation exchange. It helped narrowed the scope and highlight the gap in current applications
this thesis attempted to fill.

5
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Figure 1.4. MBSE Model 2

This type of information organization proved useful throughout the thesis.

1.5 Current Practices
The two resources that are considered most valuable in space are time and mass. With more of
either of these, any problem can be solved. Researchers around the world are figuring out how
to send more to space, faster, with better lifespans. One of the intersections of this research
is how to reduce the amount of fuel needed to move a spacecraft from one orbit to many
successive orbits. The evaluated research shows a reliance on using solutions to Lambert’s
problem, varying parameters, and comparing the change in velocities (fuel) required for

6
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large lists of individual solutions [9], [10], [11]. A solution that considers all possible
trajectories, also known as the brute force method, is too computationally demanding for
supercomputers to determine the best route for many clients. Attempts at reducing the list
size have been relatively successful using Traveling Salesman Problem (TSP) algorithms,
further discussed in Chapter 4.3 [9], [10], [11].

1.6 Methodology
This thesis simulated increasingly complex relative orbit relationships and generated solu-
tions and computation times for optimal or quasi-optimal solutions through various algo-
rithms in MATLAB software, most of which was sourced, some was adapted.

Chapter 2 provides the basis for all closed-form solutions to orbital maneuvers including a
summary of assumptions, an establishment of common vernacular for orbital elements, an
introduction to the earth-centered inertial reference frame, and a proof from familiar laws
in physics to a widely used relationship between position and acceleration.

Chapter 3 contains a baseline of commonly used maneuvers and an introduction to the
algorithms used for comparison.

Chapter 4 lists two considerations for an end user with the intention to help build a framework
for decision-making based on types of orbits that need planned visits.

Chapter 5 lists the results comparing algorithms with delta-vs and computational times.

Chapter 6 highlights potential singularities and trends as a conclusion and identifies future
work and how this can be implemented into TSP algorithms to reduce current computational
estimates at different levels based on desired integrity of the results.
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CHAPTER 2:
Problem Setup

2.1 Restricted Keplerian Two-Body Problem
In order to work on practical problems related to motion of a spacecraft around Earth,
observed were a set of six physical conditions modeled from the restricted Kepler Two-
Body Problem (K2BP). They were [12]:

1. The Earth and the spacecraft in question are an isolated system (i.e., we do not
consider forces from objects such as the moon).

2. Gravity is exactly Newtonian (i.e., we do not take general relativity into account).
3. No forces other than gravity are exchanged between Earth and the spacecraft.
4. Earth’s center is inertially fixed (i.e., the Earth’s mass is so large compared to

that of the spacecraft that gravitational effects of the spacecraft on Earth are
ignored).

5. Earth is spherical and homogeneous (i.e., there are no gravitational perturba-
tions).

6. The spacecraft is a point mass.

These were outlined as simplifications of the problem, so an analytical solution could be
approached without rigor. After the establishment of a baseline solution, complications for
increased accuracy, such as gravity perturbations due to Earth’s non-spherical shape, and
influences of the sun and moon could be added.

2.2 Orbital Elements
Before enumerating the definitions of how to look at an orbit, the use of an Earth centered,
inertial reference frame is stated. This means that coordinates are centered at the center of
Earth, which is assumed to be perfectly spherical and uniform density, and that neither the
Earth nor any of the points in the system are accelerating. Again, this is a deviation from real
life for ease of understanding and building a model without errors. Afterwards, complexities
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for when more accurate applications are required can be added. The positive x-axis points
toward the First Point of Aries, which is also the direction of Earth’s March equinox. The
positive z-axis, a right angle to x-axis, lies along the same direction as a line from Earth’s
center through its approximate north pole. Finally, the y-axis is at right angles to both and
keeping with the right hand rule. An orbit around Earth can be completely described by a set
of five parameters, usually referred to as elements. A sixth is usually included referencing
a spacecraft’s position on that orbit. In a plane, any orbit without a reference frame can be
described as an ellipse with an eccentricity, 𝑒, and a semi-major axis, 𝑎. If the reference
frame is centered at one of the focal points, Earth’s center, is added, Euler angles are the
best way to describe all the possible rotations of an ellipse, a two dimensional shape, about
three axes, which can position it in any orientation in three dimensions. The first rotation
is the inclination, 𝑖, which is the angle between the positive z-axis and the positive angular
momentum vector defined as, ℎ [13],

ℎ = 𝑟 × 𝑣 (2.1)

where 𝑟 is the radius vector indicating position of the spacecraft and 𝑣 is the velocity (first
time derivative of 𝑟 , or ¤𝑟) vector. The second rotation is the right ascension of the ascending
node, Ω, which is the angle, measured counter-clockwise when looking down on the xy-
plane, between the positive x-axis and the line formed by the intersection of the orbital plane
and the equatorial plane. Notice there are two options here and we choose the line, which
the spacecraft will travel from south to north (ascending) through the equatorial plane. Also,
notice there is a potential discontinuity or an undefined Ω if there is no inclination. Without
inclination, the ascending node position becomes arbitrary and we say it is zero and lies
along the x-axis so the third rotation has meaning. The third rotation is the argument of
perigee, 𝜔, which is the angle between the line of periapsis and the line of the ascending
node. Now that the orbit has been precisely described, the final element will show a position
on the orbit and is going to be some way to measure time. It can actually be time, 𝑡, but
more often it is some type of anomaly, an angle the spacecraft is around the orbit away from
periapsis. True anomaly, 𝑓 , mean anomaly, 𝑀 , and the eccentric anomaly, 𝐸 , are all used.
See Figure 2.1.
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Figure 2.1. True ( 𝑓 ), Mean (𝑀) and Eccentric (𝐸) Anomalies

Now that we have all six elements, known as Classical Orbital Elements (COE), spend time
on Figure 2.2 for a full understanding.

Figure 2.2. Earth-Centered Inertial Frame and Orbital Elements 
Source [13].
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The common ways to describe an orbit have been outlined thus far. Note that only six pieces
of independent data are needed to determine a unique orbit and a spacecraft’s position in it.
Besides the COE, another common way is using the Cartesian position and velocity vectors
of a spacecraft with respect to an Earth-fixed inertial reference frame. The six parameters
in that case are the distance and velocity components in three orthogonal bases. Since each
set of six parameters can uniquely define an orbit and a position, they can also be converted
from one set to any other. Continued next is the development of equations of motion, which
all future algorithms were based.

2.3 Equations of Motion
Starting with Newton’s Second Law of Dynamics [14],

𝐹 = 𝑚𝑎, (2.2)

it is set equal to Newton’s Law of Universal Gravitation [14],

𝐹 = 𝐺
𝑚1𝑚2

𝑟2 . (2.3)

Focusing on the force experienced by the spacecraft, represented by mass 𝑚2, it follows that

𝑚2𝑎2 = 𝐹2 = 𝐹 = 𝐺
𝑚1𝑚2

𝑟2 . (2.4)

Focusing on the outer terms and dividing by 𝑚2, it follows that

𝑎2 = 𝐺
𝑚1

𝑟2 . (2.5)

Since these are magnitudes and the acceleration is acting in the direction of the origin in
the reference frame, direction is implied by adding a unit vector along this direction, 𝑟

𝑟
, and

relate 𝑎2 as the second time-derivative of r [12], it follows that

¥𝑟 = 𝐺
𝑚1𝑟

𝑟3 . (2.6)

The use of dots is to signify derivatives with respect to time and underlines to signify vectors.
Finally, combining the universal gravitational constant, G, and the mass of the Earth, 𝑚1,
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for
𝜇 = 3.986004415𝑒14 𝑚3/𝑠2 [15] gives

¥𝑟 =
𝜇𝑟

𝑟3 . (2.7)

This completely integrable equation is extremely powerful and evidence of the need for the
assumptions so far. This relationship between current position and acceleration enables the
prediction of all future states.

Now, an added control to the system was considered. Adding a force is one way to introduce
a control. Here, the problem of minimum change in velocity required, or minimum delta-v
(Δ𝑣), which is a corollary for minimum fuel, was the focus. Therefore, adding the ability to
change the velocity of a spacecraft or imparting a Δ𝑣 will be the control. Ways of using the
precious resource of fuel is examined in the next chapter.
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CHAPTER 3:
Maneuver Development

Difficulty in the outlined problem lies in the complexity of analytical solutions and the
inability to derive a closed-form solution, which could be coded into an algorithm. Also,
when numerical approximations are achieved, it is only through intense computational
power. The research started with basic maneuvers, which could be proven analytically and
evolved into the application of numerical approximations. Here is an overview of options
used for comparison.

3.1 Impulsive Maneuvers
This thesis focused on impulsive maneuvers, meaning a change to a spacecraft’s velocity
can be made instantaneously. This focus is dedicated to the practical application of an
on-orbit servicing vehicle. The assumption was this type of vehicle would have onboard
rocket engines that could transfer forms of energy very quickly (i.e., the energy stored in
bonds between atoms transferred to directed molecule velocity). This would be the only
orbital maneuver option due to the mission. These high thrust burns would be favored over
low thrust during potential on-orbit servicing missions since they save time, one of the
most valuable resources. It also simplifies computational time since only two major burn
calculations would be needed instead of a numerical approximation of an continuous thrust
maneuver. The relationship between the other most important resource mass, with potential
Δ𝑣 is [13]

Δ𝑚

𝑚
= 1 − 𝑒

− Δ𝑣
𝐼𝑠𝑝𝑔𝑜 . (3.1)

When examining this equation, note that𝑚 (the initial mass of spacecraft before an impulsive
burn), 𝐼𝑠𝑝 (the specific impulse of the engine), and 𝑔𝑜 (Earth’s gravitational constant at the
Earth’s surface) are all constants. The only variables to consider are the change in mass (the
amount of fuel burned and expelled) and the change in velocity. This relationship shows
engineers potential areas of focus in designing an on-orbit servicing satellite when the
mission calls for the highest level of Δ𝑣 possible. Specifically, the closer Δ𝑚 to 𝑚 that could
be achieved, the better. Note, that 𝑚 would include target spacecraft, if it was a "space tug"
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mission – to change the target’s orbit by applying Δ𝑣 after the OOS spacecraft attached itself
to the target. That would mean the servicing spacecraft would need to be much larger than
the serviced to reduce the effect the target’s mass would have on the ratio, Δ𝑚

𝑚
. The other

key in design is in 𝐼𝑠𝑝. The more efficient use of fuel and engine combination can increase
the available Δ𝑣.

Figure 3.1. Varying Δ𝑣 and 𝐼𝑠𝑝 vs. Δ𝑚
𝑚

Here is a summary of Δ𝑣 and how the effects of 𝐼𝑠𝑝 and Δ𝑚
𝑚

should influence design. The
𝐼𝑠𝑝s listed are some of the common choices. The blue, red, and yellow lines show typical

𝐼𝑠𝑝s for cold gas, monopropellant hydrazine, and liquid oxygen/liquid hydrogen,
respectively. A materials engineering team that can push Δ𝑚

𝑚
close to 1 would be highly

valuable. Adapted from [13].
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Note that even with the great 𝐼𝑠𝑝 of hydrogen and oxygen, to go from a retrograde orbit to
prograde orbit (or vice versa) would require such a large Δ𝑣, even for the slowest practical
orbits, an OOS spacecraft would have to be 75% fuel by mass. Perhaps not impossible for a
single maneuver, but considering the mission would be to bring fuel or replacement parts to
a target these radical changes are impractical. Similarly, an optimal route determined for an
OOS spacecraft would likely group clients of similar inclinations together, due to the high
Δ𝑣 required for plane change maneuvers, evident in the results produced in Chapter 5.

3.2 Hohmann Transfer
The Hohmann Transfer, Figure 3.2, is the well-known optimal transfer between two coplanar
circular orbits [13]. This is a type of bi-impulsive rendezvous maneuver that was coded in
MATLAB to compare other algorithms for a case with a known solution. This code followed
the following logic:

1. Given semi-major axes of two circular orbits, find velocities of a spacecraft on both
orbits.

2. Find the eccentricity of an elliptical orbit traveling from one to the other in which its
periapsis and apoapsis are tangent to the circles and Earth is still one of its foci.

3. Find the velocities required at periapsis and apoapsis of the transfer orbit.
4. Calculated the Δ𝑣s required for entering transfer orbit and leaving the transfer orbit.
5. Sum both Δ𝑣s.

The bi-elliptical Hohmann transfer was not considered since it is a three-impulse burn
maneuver. It is also impractical in most scenarios, since the ratio of target semi-major axis
to chaser semi-major axis needs to be greater than 11.94 to be worth considering [13].
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Figure 3.2. Hohmann Transfer

Not to Scale.

3.3 Phasing Maneuvers
One of the most common movements a servicing satellite might encounter is changing just 
its anomaly at a different rate than happens naturally in the orbit. That is, if a chaser were 
in the same orbit as its target, it could go to a higher or lower orbit to slow down or speed 
up in order to catch up to the target or let the target catch up to it. This idea is shown in 
Figure 3.3.
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Figure 3.3. Phasing Maneuver

Not to Scale. Start with 𝑣1. Slow down option shown here. Slow to 𝑣2. Pass an integer
number of orbits before reinsertion. Speed back up to 𝑣3, which is equal to 𝑣1. This would

allow you to jump ahead or behind in the initial orbit.

The main idea here echoes the periodicity argument in Chapter 4, section 1. The choice of
the phasing orbit affects the maneuver time. If the difference in the chaser and target true
anomalies were known, the time shift that needs to occur could be calculated. Then, using
equation 4.1, it would be a matter of weighing cost of fuel against cost of time. The larger
the shift in semi-major axis, the faster the spacecraft could phase, but more fuel would be
burned. Periodicity would be a factor because the chaser would be required to enter and
leave the orbit at the same location to make use of the efficiency. So, if the chaser orbit
period were changed by a measure Δ𝑡, then the chaser could reinsert itself into the original
orbit after an integer, 𝑛, revolutions in the phasing orbit to shift its relative time to the target
by 𝑛Δ𝑡. For example, say the chaser were behind and the required Δ𝑡 was 1,500 𝑠 to catch
up, and among the infinite choices were lowering to two different orbits, one offering a Δ𝑡

of 100 𝑠 and one 300 𝑠 per revolution, then, it would take 15 or 5 revolutions, depending
on choice. This relationship wouldn’t be linear for fuel expenditure, however. In this case,
where a 600 𝑘𝑚 altitude circular orbit was chosen, dropping to 540 𝑘𝑚 and 357 𝑘𝑚 orbits
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would allow the choices but there would be 4 times the Δ𝑣 required for the 3 fold decrease
in time.

3.4 Plane Change
One way to change an orbit without changing its total energy is changing its plane only.
Geometrically, a single burn plane change can be shown to be vector subtraction. See
Figure 3.4.

Figure 3.4. Plane Change

In this case, the magnitudes of 𝑣1 and 𝑣2 remain equal. Immediately evident is that a 𝜋

radians change, would require a Δ𝑣 of 2𝑣1. Due to the law of cosines, algebraically it would
follow

Δ𝑣 =

√︃
𝑣2

1 + 𝑣2
2 − 2𝑣1𝑣2 cos 𝛾 (3.2)

becomes
Δ𝑣 =

√︃
2𝑣2

1 − 2𝑣2
1 cos 𝛾, (3.3)

which finally becomes
Δ𝑣 =

√︃
2𝑣2

1(1 − cos 𝛾). (3.4)

This produces evidence that it would be best to do the plane change when the spacecraft
is moving slowest in its orbit, the apoapsis. Combining this with the possible magnitude
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of a large plane change reveals a narrow inclination window must be imposed for planned
serviced spacecraft.

3.5 Lambert’s Problem
The general Lambert’s problem is when given two points in space around Earth and a time
to travel from one to the other, determine the transfer orbit between them [13]. It follows,
there are only three variables:

1. 𝑟𝑑 , the position vector of the deputy
2. 𝑟𝑐, the position vector of the chief
3. Time to travel between deputy and chief.

There are many situations that can narrow the scope of an orbit maneuver. Focus can be on
varying one of the orbital elements while keeping the rest the same. Many cases fall into a
group such as coplanar changes with or without a common apse line. MATLAB code was
developed for these, but not implemented in an optimal solution algorithm.

In this section, generality is searched for through the solving of Lambert’s problem. Derived
from this solution, the Δ𝑣 required to change to the transfer orbit from the chaser’s orbit
could be found, Δ𝑣1, along with the Δ𝑣 required to shift from the transfer orbit to the final
orbit, Δ𝑣2. See Figure 3.5 for an overview of Lambert’s problem with Δ𝑣 calculations.
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Figure 3.5. Lambert’s Problem

Lambert’s Problem between orbits around Earth with radius and velocity vectors. We solve
the maneuver from point A on orbit 1 to point B on orbit 2 through a transfer orbit with

associated Δ𝑣1,2.

Combining both of these Δ𝑣s we get our total Δ𝑣, the cost function seen in equation 3.5.
Lambert’s algorithm does not solve the issue of a moving target, so in order to implement
a rendezvous, the time being considered for transfer must be used to propagate the target
spacecraft forward, which serves as the actual target location for solution. This becomes
cumbersome when trying to search for an optimal solution. If done properly, however, the
three variables for the Lambert problem can be tested as follows:

1. 𝑟𝑑 is varied by small true anomaly intervals of the deputy’s orbit.
2. 𝑟𝑐 is varied by small true anomaly intervals of the chief’s orbit.
3. Time to travel between deputy and chief is varied based on periods of both orbits.
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3.6 Minimum Δ𝑉 Lambert’s Problem
Intuition dictates that a solution method involves developing a model for a deputy and chief
and simulating forward progress of time, then comparing all rendezvous options available
after each time step. This does not guarantee all possible scenarios in a reasonable time,
however (see section 4.1). Instead, computational time could be reduced by comparing
chosen intervals of each orbit and varying transit time. These potential launch points could
be achieved by just waiting (assuming their periods differed) or by phasing (see section
3.3), changing the rendezvous problem to a four-impulse burn (two for phasing, two for
Lambert’s transfer). Meaning, once a quasi-optimal solution can be found between orbits
through many solutions to Lambert’s problem, waiting or lining up the relative positions
to start that maneuver could be accomplished with relatively low Δ𝑣. A MATLAB code
was written by the author to implement a solution to Lambert’s problem, and compare
solutions. The code was derived from [13]. It follows that minimizing Lambert’s problem is
a direct search method varying as many (i.e., fine) combinations as willing, which increases
computational time and gives more accurate results. The remaining algorithms presented
attempt analytical simplifications and search algorithms to solve the problem faster.

3.7 Minimum Δ𝑉2 Lambert’s Problem
Computationally demanding lists of solutions to Lambert’s problem is the baseline solution
strategy taken for a single jump. The cost function typically is

Δ𝑣 = Δ𝑣1 + Δ𝑣2. (3.5)

where Δ𝑣1 and Δ𝑣2 are the magnitudes of Δ𝑣1 and Δ𝑣2 from Figure 3.5. That is, this is the
equation that, if could be minimized, would give the optimum minimum fuel maneuver
between two arbitrary elliptical orbits, considering any combination of 𝑟𝑐 and 𝑟𝑑 . However,
there is no easy method of analytically minimizing this or bounding it.

Reference [16] proposed a method to identify an approximate optimal transfer between
two arbitrary orbits. This was done by minimizing Δ𝑣2, instead, where the goal was to
manipulate the new cost function to reduce it to terms of ℎ, the angular momentum, which
could be solved for since the first derivative of which proved continuous and could be set to
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zero to find possible global extrema. The cost function to be minimized here was

Δ𝑣𝑒𝑠𝑡 =

√︃
Δ𝑣2

1 + Δ𝑣2
2, (3.6)

which was rewritten as

Δ𝑣2
𝑒𝑠𝑡 = 𝐶 − 2(𝑣

𝑎1 · 𝑣𝑎2 + 𝑣
𝑏1 · 𝑣𝑏2) −

2𝜇
𝑎
. (3.7)

C contains only constants of both orbits. In order to minimize Equation 3.7, C was removed
with the focus being to maximize what is subtracted from this constant to get Δ𝑣2. The
derivative of all non-constant terms was then set to zero and reduced to

𝐹 (ℎ) = ℎ4 + 𝑐3ℎ
3 + 𝑐1ℎ + 𝑐0 = 0. (3.8)

This quartic equation was solved revealing four roots, all possible options for the optimal ℎ
of the transfer orbit. Since negative and complex roots have no meaning for ℎ, those were
discarded. Two of the four roots would always be discarded [16]. The remaining two roots
would be the optimal ℎs for prograde and retrograde transfer orbit options. This proved
an analytical solution for Δ𝑣2 and here these two options were compared, the better one
selected and used as a quasi-optimal solution for Δ𝑣. A MATLAB code was generated by
Riccardo Apa to replicate this process of minimizing Δ𝑣2 and computing the Δ𝑣 using the
ℎ options found.

Note the potential for deviation possible in minimizing Δ𝑣 versus Δ𝑣2 by squaring both sides
of Equations 3.5 and 3.6, it follows

Δ𝑣2 = Δ𝑣2
1 + Δ𝑣2

2 + 2Δ𝑣1Δ𝑣2, (3.9)

which becomes
Δ𝑣2

𝑒𝑠𝑡 = Δ𝑣2
1 + Δ𝑣2

2 . (3.10)

Since Δ𝑣1 , Δ𝑣2 ≥ 0,then Δ𝑣𝑒𝑠𝑡 ≤ Δ𝑣. Due to Young’s inequality,

Δ𝑣2 = Δ𝑣2
1 + Δ𝑣2

2 + 2Δ𝑣1Δ𝑣2 ≤ Δ𝑣2
1 + Δ𝑣2

2 + Δ𝑣2
1 + Δ𝑣2

2 = 2Δ𝑣2
𝑒𝑠𝑡 . (3.11)
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Square root both sides shows Δ𝑣 ≤
√

2Δ𝑣𝑒𝑠𝑡 . Now Δ𝑣 is bounded on both sides in terms of
Δ𝑣𝑒𝑠𝑡 , as in

Δ𝑣𝑒𝑠𝑡 ≤ Δ𝑣 ≤
√

2Δ𝑣𝑒𝑠𝑡 . (3.12)

Here, Δ𝑣 is the optimal solution to minimizing Equation 3.5, to which there is no analytical
algorithm yet developed, and Δ𝑣𝑒𝑠𝑡 is what can be calculated using the base Equations 3.7
and 3.8, with solutions to the first derivative test providing options for ℎ for the transfer
orbit which gives a minimum Δ𝑣2.

3.8 Primer Vector Method
The primer vector, first introduced by Lawden [17], uses variational calculus to optimize
impulsive thrust rendezvous trajectories. The trivial case is the bi-impulsive case studied
here. A MATLAB code [18] that uses this method to ensure optimality of Δ𝑣s was added
to the algorithms compared. Although the full solution is beyond the scope of this thesis,
this method can be broken down into three distinct sections.

First, an analytical representation of change in Δ𝑣 with respect to the semi-latus rectum of
the transfer orbit, 𝑝 was found with bounds on 𝑝. To which, Brent’s root-finding method (e.i.,
a combination of the bisection method, secant method, and inverse quadratic interpolation)
found possible solutions [19].

Second, an additional direct search algorithm was applied to these solutions across potential
positions and velocities on both orbits. MATLAB’s 𝑓 𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ was used to apply the
Nelder-Mead algorithm, searching which relative positions revealed minimum Δ𝑣, while
drastically reducing the set of test locations required [20].

Finally, primer vector theory was used to determine if a found solution was an optimal
solution. This was done by setting the primer equal to the direction of thrust, or the change
in 𝑟 with respect to 𝑟𝑜 and 𝑣

𝑜
[18], [17].

Although, intuition would loop these one inside the other, 𝑓 𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ reduced most of
the work that would be required by an exhaustive list of results from Brent’s root-finding
loop by determining which inputs to drop into Brent’s method and comparing them. This is
the basis of the Nelder-Mead method, where a set of sets (i.e., a simplex) of positions and
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velocities were compared in varying ways to determine the next simplex, until there was a
simplex that had no way to maneuver any set within to get a better result [20]. Then, the
result was finally checked against the associated primer vectors for optimality.
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CHAPTER 4:
Considerations

Operators will have many options when choosing maneuvers for their satellites. This chapter
highlights two of the most important factors when making that choice.

4.1 Relative Periodicity
When faced with the problem of changing from one orbit to another with a different semi-
major axis, there will be a measure of time until the chosen maneuver can take place, then a
repeating interval of time where the same maneuver can happen. This is due to the relative
positions of deputy and chief orbits changing in a predictable repetitive way. The coplanar,
Circular to Circular (C2C) case shows this idea in its simplest case. A common example
is a trip from Earth to Mars, in which the ideal maneuver opportunity happens every 26
months, approximately [21].

In order to bound the time search interval for a transfer between two satellites, a MATLAB
code was written to determine the relative period between two orbiting objects. The code
looks at two arbitrary orbits and relative position between deputy and chief locations. It
takes as inputs these locations as well as a tolerance of how close the positions should be to
still be considered the chosen maneuver’s required starting orientation. So, assumed here
was that the chosen maneuver starts at known COE for the deputy and chief locations.

The known solution of the synodic period between Earth and Mars was used to validate the
code. The common assumptions of Earth and Mars both having a circular orbit around the
sun and are coplanar were imposed on the code, which was developed for any aribitrary
orbit around Earth. A few small changes in the code to allow for this comparison are:

1. Converting the geocentric gravitational constant to the heliocentric gravitational
constant

2. Increasing accuracy parameter of minimizing norms
3. Increasing the step size of testing times
4. Changing accuracy parameter from comparing vector to comparing vector length
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The first three changes are intuitive. The last was a simplification due to coplanar, circular
return to exact conditions does not require a specific launch point, just a specific orientation.
This reduced the problem to a basic synodic period problem.

Narrowing the difference in the vector magnitude between the starting positions and final
positions of Earth and Mars in the code to 2.683 Kilometers (km), checking once per day for
the time step, the numerical result for the interval of time for repeating relative positions was
26.03 months. Decreasing the accuracy of the vector magnitude decreased the interval of
time. For instance, better than 1 million km resulted in 25.77 months for the time interval.
So, this type of code would not only provide the decision-maker with an accurate time
frame, but an understanding of the sensitivity to numerical tolerances.

Shown in Figure 4.1 is a brief deductive proof of the coplanar, circular synodic problem
between Earth and Mars.

Figure 4.1. Traveling an Angle, 𝜃

The Mars path in red would travel 𝜃 or 2𝜋𝑛 + 𝜃, whereas the Earth path would travel
2𝜋𝑚 + 𝜃, depending on proportional difference in periods. (𝑚, 𝑛 ∈ N)
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Observe the period function with 𝑎 as the semi-major axis and 𝜏 as the period [12], as in

𝜏2 =
4𝜋2𝑎3

𝜇
. (4.1)

Then, when comparing two orbits, the one with a smaller semi-major axis must have a
shorter period. Corollary, the smaller also has a faster angular velocity, as seen in Equation
4.3. Due to the radial symmetry of circles, whichever starting points the two planets (or
satellites) have, both must travel the same final angle, 𝜃. The only difference is, the smaller
orbit, having the faster angular velocity, must travel an integer ≥ 1 number of orbits to align
with the outer orbit. The smaller orbit’s fastest option would be 1 orbit or 2𝜋 + 𝜃 radians
being the fastest next possible alignment. Assuming the best relative position to initiate
travel from Earth to Mars could be known, the synodic period would be the time between
this optimal start and the next available optimal start. First, angular velocities were found,
as in

𝜔 =
2𝜋
𝜏
. (4.2)

Substituting equation 4.1 into 4.2, it followed that

𝜔 =

√︂
𝜇

𝑎3 . (4.3)

If 𝜔𝐸 were Earth’s angular velocity and 𝜔𝑀 for Mars, and the synodic period, 𝜏𝑠𝑦𝑛, then

𝜃 = 𝜔𝑀𝜏𝑠𝑦𝑛, (4.4)

and
𝜃 + 2𝜋 = 𝜔𝐸𝜏𝑠𝑦𝑛. (4.5)

Substituting 4.4 into 4.5, 𝜏𝑠𝑦𝑛 was solved for, as in

𝜏𝑠𝑦𝑛 =
2𝜋

𝜔𝐸 − 𝜔𝑀

. (4.6)

With semi-major axis of 227,956,000 km and 149,598,000 km [22] for Mars and Earth,
respectively plugged into 4.3 with 𝜇𝑠𝑢𝑛 of 1.32712442099𝑒20 𝑚3/𝑠2 [15], it becomes
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𝜏𝑠𝑦𝑛 = 6.73793e7 Seconds (s) or 25.9951 Months (mo).

This result was in line with the MATLAB code results and a 0.01154% variation within
NASA’s published results [22].

This idea is crucial to the programmer since it provides a time window where all possible
relative positions can be compared. This is one way to vastly reduce the computational
power required to determine absolute optimal maneuvers. It also provides a wait time if a
desired burn is missed until the exact conditions repeat.

Unfortunately, traveling to or from an elliptical orbit or if the orbits are non-coplanar the
symmetry benefit used going from circular to circular can not be applied and the interval to
repeat relative positions is vastly increased.

4.2 Variations from Bi-Impulsive
Even though the focus of this study was bi-impulsive rendezvous maneuvers to change
orbits, there are unique circumstances that could require planners to investigate other routes,
using the same equipment. Consider a large plane change in which the magnitude of Δ𝑣
is unusually high. There are ways to reduce this burden. If you consider perturbations, a
deviation from the K2BP, there may be a way to use differential node rotation if long wait
times are not an issue. However, one of the main underlying assumptions of this thesis was
that long wait times would be an issue. So, an option more valuable may be considering
more impulses. If this is allowed for, the apogee could be raised, lowering the lowest velocity
in orbit, then making the inclination change, then lowering the apogee back. Consider a
600 km by 39,700 km orbit (i.e., perigee and apogee altitudes). Due to the conservation of
energy equation [13],

𝑣2

2
− 𝜇

𝑟
= − 𝜇

2𝑎
, (4.7)

there would be a velocity at apogee of 1.51 𝑘𝑚/𝑠. If 0.122 𝑘𝑚/𝑠 Δ𝑣 at perigee were added
to raise the apogee to 50,000 km, the velocity at apogee would be 1.25 𝑘𝑚/𝑠. This means
only an inclination change of 0.22 rad would make this three burn worth it compared to the
single.
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4.3 Traveling Salesman Problem
Mission planning for an on-orbit servicing satellite with many targets is a complex task.
This type of problem is commonly referred to as the TSP, which is a specific type of Vehicle
Routing Problem (VRP) [9], [10], [11]. Whereas the TSP has traditionally answered how
a person would travel the least distance between a list of cities starting and ending at the
same place, the VRP is a more general problem, which searches for all the optimal routes
associated with a fleet of vehicles to reach all targets fulfilling each target’s requirements [23].
So, the TSP is a VRP with one vehicle (a traveling salesman’s car), a number of static,
deterministic nodes (list of cities), with no node requirements other than the first and last
node must be the same. In the orbital TSP, the computing cost to travel between nodes is more
complex than a fixed distance. This research was an attempt to reduce the computational
time required to achieve a reasonable quasi-optimal fuel solution for an orbit transfer.

Algorithms for reducing a single Δ𝑣 calculation time could be applied to an exhaustive
list of all cost possibilities with reduced integrity of each calculation, but VRP algorithms
reduce the exhaustive list needed while keeping the integrity of a single Δ𝑣 cost. Then, both
techniques could certainly be combined after the impact of both are well understood.

Before this section, a way to solve for the optimal minimum fuel maneuver between two
arbitrary elliptical orbits within a reasonable time was shown. Unfortunately, solving a TSP
between these types of orbits means the positions and velocities of the spacecrafts, and
hence the Δ𝑣 required for rendezvous (corollaries for location and distance in the traditional
TSP) are not static. This increases the hardness of the TSP problem, since calculating a list
of all possible costs, becomes a permutation problem, where all objects are being chosen
out of the total number of objects, reducing the permutation equation to 𝑁! possibilities, N
being the number of nodes (or clients or cities) that are planned for visit. Each possibility
represents a set of N costs that must be calculated. So, stringing multiple jumps together
compounds the problem factorially, which can be seen in
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Table 4.1. Permutations and Cost Computations Required for Number of
Nodes

N Possibilities Cost Total N Possibilities Cost Total
Computations Time, s Computations Time, s

1 1 1 1.67e3 9 3.62e5 3.26e6 5.44e9
2 2 4 6.67e3 10 3.62e6 3.62e7 6.03e10
3 6 18 3.00e4 15 1.31e12 1.97e13 3.29e16
4 24 96 1.60e5 20 2.43e18 4.84e19 8.07e22
5 120 600 1.00e6 25 1.55e25 3.88e26 6.47e29
6 720 4,320 7.20e6 50 3.04e64 1.52e66 2.53e29
7 5,040 3.52e4 5.87e7 100 9.33e157 9.33e159 1.56e163
8 4.03e4 3.22e5 5.37e8 1000 4.02e2567 4.02e2570 6.7e2573

Table 5.6 was used to compute average time per cost computation using Lambert’s algorithm
to input total times in Table 4.1, – the time projected to solve an N-node TSP on a Microsoft
Surface Pro 7 with 16GB of RAM and an Intel Core i7-1065G7 processor. For perspective,
the world’s fastest supercomputer, the Hewlett Packard Enterprise Frontier can compute 1.6
exaflops (1.6e18 floating point operations per second) [24]. If calculating a single optimal
Δ𝑣 took only 1 flop, the computational time for Frontier to find the optimal route between
25 spacecraft would be 7.69 years or 20 spacecraft in 30.3 seconds. The latter doesn’t seem
bad, but it becomes an affordability issue. The Frontier was built for $600M [24]. Also,
each Δ𝑣 takes thousands of flops. With that in mind, the Microsoft Pro could use Lambert’s
algorithm to solve 5 nodes in 11 days, 10 nodes in 1900 years. This thesis was limited by
the use of a single Intel Core i7-1065G7 processor. One of the most economical computing
options in 2022 was Nvidia’s RTX4090, retailing at $1,599 claiming 82.6 teraflops (8.26e13
flops [25]). That would be 1/19,370th of the computing power for only 1/375,235th the cost
of the Frontier, but 290x as powerful is the i7-1065G7 and 3x the price. There would still
be a large portion of a mission budget dedicated to purchasing hardware just for flight path
planning, either way.
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CHAPTER 5:
Results

The purpose of this chapter is to present results of increasingly complex orbit transfer cases.
The presentation of each case follows:

1. Explain any reasoning behind choices.
2. Show plot of orbits to be tested.
3. Show table of results. Large data sets reduced to single example table.
4. Plot of results. Large data sets reduced to single plot showing major trends.

Consistent with likely limitations imposed on OOS spacecraft missions presented in section
3.1, it was assumed that every orbit was traveling in the same direction (i.e., both deputy
and chief were retrograde or they were both prograde).
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5.1 Coplanar

5.1.1 C2C

Figure 5.1. Orbits Tested for Coplanar, C2C 

Table 5.1. Coplanar, C2C Results

Semi-Major Hohmann, Primer Vector Minimize Δ𝑣2 Lambert
Axis of km/s(Actual) km/s,(% deviation) km/s,(% deviation) km/s,(% deviation)

Deputy, km

0.1 5.151088 5.151088(0.00%) 5.150925(0.003%) 5.152534(0.28%)
0.2 3.300136 3.300134(0.00%) 3.299825(0.009%) 3.304146(0.12%)
0.3 2.335039 2.335033(0.00%) 2.334918(0.005%) 2.335417(0.016%)
0.4 1.699533 1.699533(0.00%) 1.699449(0.005%) 1.701964(0.14%)
0.5 1.236884 1.236884(0.00%) 1.236796(0.007%) 1.237757(0.071%)
0.6 0.880447 0.880445(0.00%) 0.880350(0.011%) 0.880586(0.016%)
0.7 0.595542 0.595542(0.00%) 0.595488(0.009%) 0.596687(0.19%)
0.8 0.361790 0.361790(0.00%) 0.361743(0.013%) 0.362299(0.14%)
0.9 0.166201 0.166201(0.00%) 0.166141(0.036%) 0.166282(0.049%)
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The accuracy of the primer vector method determined its use as the baseline for all other
cases.

Figure 5.2. Coplanar, C2C Results

Table 5.2. Coplanar, C2C Results, Time

Hohmann Primer Vector Minimize Δ𝑣2 Lambert
Computational time, s 0.005247 103.7 16.14 373.1

Precision for the Lambert code was increased until results in Table 5.1 had less than 0.3%
variation.

5.1.2 Circular to Elliptical (C2E)
Two subcases were considered:
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1. GEO to GEO, varying eccentricity of chief
2. GEO to LEO, varying eccentricity of chief

Figure 5.3. Orbits Tested for Coplanar, C2E, GEO to GEO
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Table 5.3. Coplanar, C2E, GEO to GEO Results

Eccentricity Primer Vector Minimize Δ𝑣2 Lambert
of Chief, km km/s (Actual) km/s,(% deviation) km/s

0.1 0.152134 0.152209(0.049%) 0.152725(0.39%)
0.2 0.302406 0.302519(0.037%) 0.302891(0.16%)
0.3 0.452828 0.452964(0.030%) 0.453593(0.17%)
0.4 0.605657 0.605811(0.025%) 0.606256(0.099%)
0.5 0.763711 0.763870(0.021%) 0.764506(0.10%)
0.6 0.930923 0.931089(0.018%) 0.931205(0.030%)
0.7 1.113578 1.113746(0.015%) 1.113666(0.008%)
0.8 1.323636 1.323808(0.013%) 1.323826(0.014%)
0.9 1.591941 1.592111(0.011%) 1.592477(0.033%)

Figure 5.4. Coplanar, C2E, GEO to GEO Results
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Table 5.4. Coplanar, C2E, GEO to GEO Results, Time

Primer Vector Minimize Δ𝑣2 Lambert
Computational time, s 103.9 16.4 378.3

Figure 5.5. Orbits Tested for Coplanar, C2E, GEO to LEO
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Table 5.5. Coplanar, C2E, GEO to LEO Results

Eccentricity Primer Vector Minimize Δ𝑣2 Lambert
of Chief, km km/s(Actual) km/s,(% deviation) km/s,(% deviation)

0.1 3.699748 3.700818(0.029%) 3.725433(0.69%)
0.2 3.594347 3.596097(0.049%) 3.607791(0.37%)
0.3 3.498848 3.512540(0.39%) 3.504152(0.15%)
0.4 3.412568 3.427714(0.44%) 3.413569(0.029%)
0.5 3.335015 3.355458(0.61%) 3.334501(0.015%)
0.6 3.265990 3.287161(0.65%) 3.268684(0.082%)
0.7 3.205479 3.231364(0.81%) 3.212876(0.23%)
0.8 3.153761 3.186492(1.0%) 3.168139(0.45%)
0.9 3.111455 3.211736(3.2%) 3.133614(0.71%)
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Figure 5.6. Coplanar, C2E, GEO to LEO Example Flight Path
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Figure 5.7. Coplanar, C2E, GEO to LEO Results

Table 5.6. Coplanar, C2E, GEO to LEO Results, Time

Primer Vector Minimize Δ𝑣2 Lambert
Computational time, s 100.6 17.3 15009.8

5.1.3 Elliptical to Circular (E2C)
Again, two subcases were considered:

1. GEO to GEO, varying eccentricity of deputy
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2. LEO to GEO, varying eccentricity of deputy

In other words, these were the reverse cases of section 5.1.2.

Figure 5.8. Orbits Tested for Coplanar, E2C, GEO to GEO
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Table 5.7. Coplanar, E2C, GEO to GEO Results

Eccentricity Primer Vector km/s Minimize Δ𝑣2 km/s
of Deputy, km (Actual) (% deviation)

0.1 0.152133 0.152209(0.050%)
0.2 0.302406 0.302519(0.037%)
0.3 0.452828 0.452964(0.030%)
0.4 0.605658 0.605811(0.025%)
0.5 0.763711 0.763870(0.021%)
0.6 0.930924 0.931089(0.018%)
0.7 1.113577 1.113746(0.015%)
0.8 1.323636 1.323808(0.013%)
0.9 1.591937 1.592111(0.011%)

Figure 5.9. Coplanar, E2C, GEO to GEO Results
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Table 5.8. Coplanar, E2C, GEO to GEO Results, Time

Primer Vector km/s Minimize Δ𝑣2 km/s
Computational time, s 108.5 16.6

Figure 5.10. Orbits Tested for Coplanar, E2C, LEO to GEO
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Table 5.9. Coplanar, E2C, LEO to GEO Results

Eccentricity Primer Vector km/s Minimize Δ𝑣2 km/s
of Deputy, km (Actual) (% deviation)

0.1 3.699748 3.714281(0.39%)
0.2 3.594347 3.609152(0.41%)
0.3 3.498849 3.516377(0.50%)
0.4 3.412556 3.430440(0.52%)
0.5 3.335015 3.353420(0.55%)
0.6 3.265992 3.296665(0.94%)
0.7 3.205479 3.231599(0.81%)
0.8 3.153760 3.181695(0.89%)
0.9 3.111453 3.166013(1.8%)
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Figure 5.11. Coplanar, E2C, LEO to GEO Results

Table 5.10. Coplanar, E2C, LEO to GEO Results, Time

Primer Vector km/s Minimize Δ𝑣2 km/s
Computational time, s 109.5 16.6
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5.1.4 Elliptical to Elliptical (E2E) with Common Apse Line

Figure 5.12. Orbits Tested for Coplanar, E2E, LEO to GEO 

Table 5.11. Coplanar, E2E, LEO to GEO Results Example

Deputy Primer Vector km/s Minimize Δ𝑣2 km/s % Variation
Eccentricity 𝑒𝐶=0.1 𝑒𝐶=0.1 , %

0.1 3.601562 3.601693 0.004
0.2 3.495671 3.496111 0.013
0.3 3.382308 3.382528 0.006
0.4 3.260824 3.261005 0.006
0.5 3.129581 3.130017 0.014
0.6 2.985529 2.985816 0.010
0.7 2.823058 2.823521 0.016
0.8 2.630722 2.631499 0.030
0.9 2.657048 2.657974 0.035
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Figure 5.13. Coplanar, E2E, LEO to GEO Results

Table 5.12. Coplanar, E2E, LEO to GEO Results, Time

Primer Vector km/s Minimize Δ𝑣2 km/s
Computational time, s 902.7 226.4
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5.2 Non-coplanar

5.2.1 C2C
Following the same pattern as coplanar results, C2C was considered the least complex and,
hence, the starting point for non-coplanar. 𝑎𝐶 and 𝑖𝐶 were incremented from a ratio of .1
to 1 by .1 and from 0◦ to 90◦ by 10◦, respectively. Figure 5.14 first shows varying 𝑖𝐶 for a
single 𝑎𝐶 . Then, Figure 5.15 shows varying 𝑖𝑐 for all 𝑎𝑐.

Figure 5.14. Orbits Tested for Non-coplanar, C2C, from GEO, Example
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Figure 5.15. Orbits Tested for Non-coplanar, C2C, from GEO, Full Set 

Table 5.13. Non-coplanar, C2C, from GEO Results, Example

Chief Primer Vector km/s Minimize Δ𝑣2 km/s % Variation
Inclination, ◦ 𝑎𝑐/𝑎𝑑=0.1 𝑎𝑐/𝑎𝑑=0.1 , %

10 5.183565 5.200229 0.32
20 5.277196 5.315068 0.72
30 5.422030 5.466119 0.81
40 5.605218 5.652251 0.84
50 5.813966 5.8659593 0.89
60 6.037114 6.095810 0.97
70 6.265521 6.331825 1.1
80 6.491878 6.565472 1.1
90 6.710356 6.789565 1.2
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Figure 5.16. Non-coplanar, C2C, from GEO Results
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5.2.2 C2E

Figure 5.17. Orbits Tested for Non-coplanar, C2E, LEO to GEO 

Table 5.14. Non-coplanar, C2E, LEO to GEO Results, Example

Chief Primer Vector, km/s Minimize Δ𝑣2, km/s % Variation
Inclination, ◦ 𝑒𝑐 = 0.1 𝑒𝑐 = 0.1 , %

10 3.768920 3.771853 0.078
20 3.892255 3.907396 0.39
30 4.076897 4.091157 0.35
40 4.302183 4.317971 0.37
50 4.550599 4.571354 0.46
60 4.809042 4.837926 0.60
70 5.067972 5.106851 0.77
80 5.320409 5.369164 0.92
90 5.561010 5.617342 1.0
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Figure 5.18. Non-coplanar, C2E, LEO to GEO Results
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Figure 5.19. Orbits Tested for Non-coplanar, C2E, GEO to LEO 

Table 5.15. Non-coplanar, C2E, GEO to LEO Results, Example

Chief Primer Vector, km/s Minimize Δ𝑣2, km/s % Variation
Inclination, ◦ 𝑒𝑐 = 0.1 𝑒𝑐 = 0.1 , %

10 3.743645 3.776022 0.86
20 3.868283 3.926690 1.5
30 4.056336 4.126856 1.7
40 4.287733 4.378148 2.1
50 4.544820 4.651230 2.3
60 4.813880 4.927326 2.4
70 5.084695 5.206801 2.4
80 5.349602 5.480209 2.4
90 5.602723 5.739733 2.4
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Figure 5.20. Non-coplanar, C2E, GEO to LEO Results, Selected
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5.2.3 E2C

Figure 5.21. Orbits Tested for Non-coplanar, E2C, GEO to GEO

Table 5.16. Non-coplanar, E2C, GEO to GEO Results, Example

Chief Primer Vector, km/s Minimize Δ𝑣2, km/s % Variation
Inclination, ◦ 𝑒𝑑 = 0.1 𝑒𝑑 = 0.1 , %

10 0.5312939 0.5273180 0.75
20 1.015662 1.010082 0.55
30 1.497067 1.490631 0.43
40 1.968754 1.960191 0.43
50 2.426458 2.416737 0.40
60 2.866381 2.854780 0.40
70 3.284992 3.272068 0.39
80 3.678983 3.664727 0.39
90 4.045276 4.029716 0.38
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Figure 5.22. Non-coplanar, E2C, GEO to GEO Results
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Figure 5.23. Orbits Tested for Non-coplanar, E2C, LEO to GEO 

Table 5.17. Non-coplanar, E2C, LEO to GEO Results, Example

Chief Primer Vector, km/s Minimize Δ𝑣2, km/s % Variation
Inclination, ◦ 𝑒𝑑 = 0.1 𝑒𝑑 = 0.1 , %

10 3.743645 3.730605 0.35
20 3.868281 3.860424 0.20
30 4.056337 4.059141 0.069
40 4.287732 4.296041 0.19
50 4.544819 4.548423 0.079
60 4.813881 4.811102 0.058
70 5.084693 5.074639 0.20
80 5.349600 5.331991 0.33
90 5.602731 5.577718 0.45

58

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



Figure 5.24. Non-coplanar, E2C, LEO to GEO Results
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5.2.4 E2E

Figure 5.25. Orbits Tested for Non-coplanar, E2E, GEO to LEO 

Table 5.18. Non-coplanar, E2E, GEO to LEO Results, Example

Chief Primer Vector, km/s Minimize Δ𝑣2, km/s % Variation
Inclination, ◦ 𝑒𝑐, 𝑒𝑑 = 0.1 𝑒𝑐𝑒𝑑 = 0.1 , %

10 3.642294 3.628646 0.37
20 3.757706 3.743205 0.39
30 3.931292 3.916576 0.37
40 4.144190 4.131243 0.31
50 4.380060 4.371491 0.20
60 4.626383 4.624459 0.042
70 4.873901 4.869412 0.092
80 5.115715 5.108184 0.15
90 5.346559 5.336495 0.19
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Figure 5.26. Non-coplanar, E2E, GEO to LEO Results
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Figure 5.27. Non-coplanar, E2E, GEO to GEO Example Flight Path

Starting with coplanar results, C2C the primer vector method the most accurate, minimizing
Δ𝑣2 the fastest, and both an improvement over Lambert’s problem. The larger the change
in 𝑎𝑐 compared to 𝑎𝑑 , the larger the required Δ𝑣, linearly at first, then asymptotically as it
approached a 0 ratio. In this case, the magnitude of the time improvement is not evident yet,
since the code can take advantage of the symmetry of circles to vary only one true anomaly
instead of both.

This became evident first in the C2E, GEO toLEO case when varying both true anomalies
became required to achieve less than 13% variation between the Lambert solution results
and primer vector results. The problem with the Lambert solution was that you needed to
increase the accuracy of results by decreasing the intervals between true anomalies tested.
After proven to become prohibitively time consuming to match the results, Lambert’s
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algorithm was dropped in order to focus on comparison between the remaining algorithms
and potential trends in orbit types. This case revealed varying 𝑒𝑐 could either increase or
decrease Δ𝑣 required based on change of 𝑎. The closer 𝑎𝑐 was to 𝑎𝑑 the the more direct, or
less inverse the relationship became, depending on which ratio the change occurred. This
case also first revealed the impact of singular matrices and a weakness in the minimum Δ𝑣2

code that increases variation with higher eccentricities.

In E2C, it became evident that costs were equal in reverse maneuvers, meaning half of the
results so far did not have to be included and the plan for future testing was cut in half.

In E2E, further weaknesses in the minimize Δ𝑣2 code were realized with singularities
apparent with eccentricity differences containing 1 significant figure. Most of these were
remedied by adding 0.000001 onto one of them. Δ𝑣 decreased with increasing 𝑒𝑐 or 𝑒𝑑 .

Moving on to non-coplanar, C2C showed an apparent direct linear relationship between
change in 𝑖 and Δ𝑣. % variation also increased overall, with higher %s at higher changes of
𝑖.

In C2E, higher 𝑒𝑐 consistently became a shift to lower Δ𝑣, contrary to the shift that occurred
due to varying 𝑎 in the coplanar cases. With a large change in 𝑎, % variation became an
issue for higher 𝑒 changes.

In E2C, GEO to GEO there was an immediate flip in the coplanar realized relationship of
higher 𝑒𝑑 meaning higher Δ𝑣 to the opposite. However, it reverts again since higher 𝑒𝑑 also
showed faster increases in Δ𝑣. In LEO to GEO, however, this flip was not evident, and the
higher 𝑒𝑑 did not indicate faster increases, but slower.

E2E revealed increasing 𝑒𝑐 or 𝑒𝑑 decreased Δ𝑣 required, showing this combination can
overwhelm the dominance previously observed in changing 𝑖.

The optimal flight path followed a perigee to apogee or apogee to perigee for all coplanar
results. It wasn’t until inclination changes that there were slight variations in this trend.
If severely limited in computational power, starting a search in these areas of fastest and
slowest speeds would be prudent.

63

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



THIS PAGE INTENTIONALLY LEFT BLANK

64

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



CHAPTER 6:
Conclusion and Future Work

6.1 Conclusion
Using MATLAB-based codes, this thesis compared algorithms for finding the optimal
two-impulse transfer between orbits. Many cases of varying parameters were simulated
to evaluate the algorithms for design of multi-client OOS missions, along with possible
decision points for decision-makers based on client orbit types and differences.

The primer vector method was the most accurate and at least 150x faster than the Lambert
method, but minimizing Δ𝑣2 provided a 75-85% reduction in computation time within
2.4% compared to the primer vector method. Either method would be a great choice for
implementation into a TSP over the Lambert method, depending on computational power
pricing.

The primer vector method with the highest accuracy across all cases would be the best
choice for clients occupying highly varied inclinations and eccentricities, especially when
computational power represents a relatively small portion of the mission’s budget. This
would also be the preferred method without a complete understanding of client differences.

The minimizing Δ𝑣2 method would be the best choice with many more clients in similar
orbits. Examples could be servicing every SES satellite in GEO, or collecting a series of
Starlink satellites for deorbiting.

6.2 Future Work
This thesis compared four algorithms for a single bi-impulsive orbit rendezvous solution.
Two were seriously considered for updating the current state of successive node planning.
There are other algorithms that have been developed that require coding and testing. The
ones tested here, or others that prove better, must be implemented on a total cost plan for
reaching increasing numbers of clients. The total cost plan should be considered dynamic
and incorporate time between transfers and earned value into the cost function. This would
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answer the question which clients to visit to earn the most and allow for adding clients mid-
mission as opportunities arise. In addition to the cost function, there should be additional
testing for the algorithms presented here to vary Ω and 𝜔 from COE, as well as relative
position vector and velocity vector comparison. This could provide additional insight into
the benefit of the primer method over the minimum Δ𝑣2 or vice versa. After one of these
algorithms is implemented into a TSP cost collection, TSP algorithms could be used to
further reduce computational power, such as branch-and-bound, branch-and-cut, heuristic,
or metaheuristic methods [23].
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