222 research outputs found

    Self-Sustaining Oscillations in Complex Networks of Excitable Elements

    Full text link
    Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a single direction and one or a few network loops are selected as driving loops in which the excitation circulates periodically. We analyze the mechanism, describe the oscillating states, identify the pacemaker loops and explain key features of their distribution. This mechanism may play a role in epileptic seizures.Comment: 5 pages, 4 figures included, submitted to Phys. Rev. Let

    Building cloud applications for challenged networks

    Get PDF
    Cloud computing has seen vast advancements and uptake in many parts of the world. However, many of the design patterns and deployment models are not very suitable for locations with challenged networks such as countries with no nearby datacenters. This paper describes the problem and discusses the options available for such locations, focusing specifically on community clouds as a short-term solution. The paper highlights the impact of recent trends in the development of cloud applications and how changing these could better help deployment in challenged networks. The paper also outlines the consequent challenges in bridging different cloud deployments, also known as cross-cloud computing

    A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for {beta} subunit interaction

    Get PDF
    A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel {alpha} subunit. The mutation decreased modulation of the {alpha} subunit by {beta}1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of {beta}1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type{alpha} subunit with the {beta}1or {beta}3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for {beta} subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the {alpha} and {beta}1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility

    Wide-Field Motion Integration in Fly VS Cells: Insights from an Inverse Approach

    Get PDF
    Fly lobula plate tangential cells are known to perform wide-field motion integration. It is assumed that the shape of these neurons, and in particular the shape of the subclass of VS cells, is responsible for this type of computation. We employed an inverse approach to investigate the morphology-function relationship underlying wide-field motion integration in VS cells. In the inverse approach detailed, model neurons are optimized to perform a predefined computation: here, wide-field motion integration. We embedded the model neurons to be optimized in a biologically plausible model of fly motion detection to provide realistic inputs, and subsequently optimized model neuron with and without active conductances (gNa, gK, gK(Na)) along their dendrites to perform this computation. We found that both passive and active optimized model neurons perform well as wide-field motion integrators. In addition, all optimized morphologies share the same blueprint as real VS cells. In addition, we also found a recurring blueprint for the distribution of gK and gNa in the active models. Moreover, we demonstrate how this morphology and distribution of conductances contribute to wide-field motion integration. As such, by using the inverse approach we can predict the still unknown distribution of gK and gNa and their role in motion integration in VS cells

    The Role of Visual Information in Numerosity Estimation

    Get PDF
    Mainstream theory suggests that the approximate number system supports our non-symbolic number abilities (e.g. estimating or comparing different sets of items). It is argued that this system can extract number independently of the visual cues present in the stimulus (diameter, aggregate surface, etc.). However, in a recent report we argue that this might not be the case. We showed that participants combined information from different visual cues to derive their answers. While numerosity comparison requires a rough comparison of two sets of items (smaller versus larger), numerosity estimation requires a more precise mechanism. It could therefore be that numerosity estimation, in contrast to numerosity comparison, might rely on the approximate number system. To test this hypothesis, we conducted a numerosity estimation experiment. We controlled for the visual cues according to current standards: each single visual property was not informative about numerosity. Nevertheless, the results reveal that participants were influenced by the visual properties of the dot arrays. They gave a larger estimate when the dot arrays consisted of dots with, on average, a smaller diameter, aggregate surface or density but a larger convex hull. The reliance on visual cues to estimate numerosity suggests that the existence of an approximate number system that can extract numerosity independently of the visual cues is unlikely. Instead, we propose that humans estimate numerosity by weighing the different visual cues present in the stimuli

    A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations

    Get PDF
    Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.This work was funded by K23NS104252 (A.A.L.) R01 MH117777 (E.B., J.W.R.) Whitehall Foundation (KH) 5F31NS120783-02 (Z.L.) 1U19NS104590 (A.L.) R01NS106611-02 (J.S., M.K.) MTEC-20-06-MOM013 (J.S., M.K.) 1U19NS107609-01 (I.S., J.L.) 1U19NS104590 (A.L., J.S.F., I.S.) 1U19NS107609 (E.A.B., J.W.R., J.J.L., I.S.) La Caixa LCF/PR/HR21/52410030 (A.N.O., L.dl.P) European Research Council Consolidator Grant 101001121 (B.P.S.) U.S.-Israel BSF grant 2017015 (RM)U01-NS113198 (J.J.) NSF CAREER IOS-1844935 (M.vdM.) 1R01NS121764-01 (B.L.M.) R01 MH122391 (G.B.) 30MH126483 (J.A.G.) Fondation pour la Recherche Médicale EQU202103012768 (M.Z.) 1R16-NS131108-01 (L.L.)

    Nutrition and dementia care: developing an evidence-based model for nutritional care in nursing homes.

    Get PDF
    BACKGROUND: There is a growing volume of research to offer improvements in nutritional care for people with dementia living in nursing homes. Whilst a number of interventions have been identified to support food and drink intake, there has been no systematic research to understand the factors for improving nutritional care from the perspectives of all those delivering care in nursing homes. The aim of this study was to develop a research informed model for understanding the complex nutritional problems associated with eating and drinking for people with dementia. METHODS: We conducted nine focus groups and five semi-structured interviews with those involved or who have a level of responsibility for providing food and drink and nutritional care in nursing homes (nurses, care workers, catering assistants, dietitians, speech and language therapists) and family carers. The resulting conceptual model was developed by eliciting care-related processes, thus supporting credibility from the perspective of the end-users. RESULTS: The seven identified domain areas were person-centred nutritional care (the overarching theme); availability of food and drink; tools, resources and environment; relationship to others when eating and drinking; participation in activities; consistency of care and provision of information. CONCLUSIONS: This collaboratively developed, person-centred model can support the design of new education and training tools and be readily translated into existing programmes. Further research is needed to evaluate whether these evidence-informed approaches have been implemented successfully and adopted into practice and policy contexts and can demonstrate effectiveness for people living with dementia
    • …
    corecore