1,333 research outputs found

    Electronic structure and bonding in unligated and ligated FeII porphyrins

    Get PDF
    The electronic structure and bonding in a series of unligated and ligated FeII porphyrins (FeP) are investigated by density functional theory (DFT). All the unligated four-coordinate iron porphyrins have a 3A2g ground state that arises from the (dxy)2(dz2)2(dπ)2 configuration. The calculations confirm experimental results on Fe tetraphenylporphine but do not support the resonance Raman assignment of Fe octaethylporphine as 3Eg, nor the early assignment of Fe octamethyltetrabenzporphine as 5B2g. For the six-coordinate Fe–P(L)2 (L = HCN, pyridine, CO), the strong-field axial ligands raise the energy of the Fe dz2 orbital, thereby making the iron porphyrin diamagnetic. The calculated redox properties of Fe–P(L)2 are in agreement with experiment. As models for deoxyheme, the energetics of all possible low-lying states of FeP(pyridine) and FeP(2-methylimidazole) have been studied in detail. The groundstate configuration of FeP(2-methylimidazole) was confirmed to be high-spin (dxy)2(dz2)1(dπ)2(dx2−y2)1; FeP (pyridine) is shown to be a poor model for high-spin deoxyheme. © 2002 American Institute of Physics

    Influence of intramolecular hydrogen bonding on the electronic structure of oxymorphone

    Full text link

    Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn

    Get PDF
    A systematic theoretical study of the electronic structure and bonding in metal meso-tetraphenyl porphines MTPP, M=Fe, Co, Ni, Cu, Zn has been carried out using a density functional theory method. The calculations provide a clear elucidation of the ground states for the MTPPs and for a series of [MTPP]x ions (x = 2+, 1+, 1−, 2−, 3−, 4−), which aids in understanding a number of observed electronic properties. The calculation supports the experimental assignment of unligated FeTPP as 3A2g, which arises from the configuration (dxy)2(dz2)2(dxz)1(dyz)1. The calculated M–TPP binding energies, ionization potentials, and electron affinities are in good agreement with available experimental data. The influence of axial ligands and peripheral substitution by fluorine are in accord with the experimental observation that not only half-wave potentials (E1/2) of electrode reactions, but also the site of oxidation/reduction, may be dependent on the porphyrin basicity and the type of axial ligand coordination. © 2002 American Institute of Physics

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using the ab initio coupled-cluster singles and doubles (CCSD) correlation method. The correlation contribution to the binding energy is decomposed in terms of nonadditive many-body interactions between the monomers in the chains, the so-called energy increments. Van der Waals constants for the two-body dispersion interaction between distant monomers in the infinite chains are extracted from this decomposition. They allow a partitioning of the correlation contribution to the binding energy into short- and long-range terms. This finding affords a significant reduction in the computational effort of ab initio calculations for solids as only the short-range part requires a sophisticated treatment whereas the long-range part can be summed immediately to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo

    Intermolecular Potential of the Methane Dimer and Trimer

    Get PDF
    The Heitler–London (HL) exchange energy is responsible for the anisotropy of the pair potential in methane. The equilibrium dimer structure is that which minimizes steric repulsion between hydrogens belonging to opposite subsystems. Dispersion energy, which represents a dominating attractive contribution, displays an orientation dependence which is the mirror image of that for HL exchange. The three‐body correction to the pair potential is a superposition of HL and second‐order exchange nonadditivities combined with the Axilrod–Teller dispersion nonadditivity. A great deal of cancellation between these terms results in near additivity of methane interactions in the long and intermediate regions

    Effects of Charge and Substituent on the S∙∙∙N Chalcogen Bond

    Get PDF
    Neutral complexes containing a S···N chalcogen bond are compared with similar systems in which a positive charge has been added to the S-containing electron acceptor, using high-level ab initio calculations. The effects on both XS···N and XS+···N bonds are evaluated for a range of different substituents X = CH3, CF3, NH2, NO2, OH, Cl, and F, using NH3 as the common electron donor. The binding energy of XMeS···NH3 varies between 2.3 and 4.3 kcal/mol, with the strongest interaction occurring for X = F. The binding is strengthened by a factor of 2–10 in charged XH2S+···NH3 complexes, reaching a maximum of 37 kcal/mol for X = F. The binding is weakened to some degree when the H atoms are replaced by methyl groups in XMe2S+···NH3. The source of the interaction in the charged systems, like their neutral counterparts, is derived from a charge transfer from the N lone pair into the σ*(SX) antibonding orbital, supplemented by a strong electrostatic and smaller dispersion component. The binding is also derived from small contributions from a CH···N H-bond involving the methyl groups, which is most notable in the weaker complexes

    Incorporating fine-scale environmental heterogeneity into broad-extent models

    Get PDF
    A key aim of ecology is to understand the drivers of ecological patterns, so that we can accurately predict the effects of global environmental change. However, in many cases, predictors are measured at a finer resolution than the ecological response. We therefore require data aggregation methods that avoid loss of information on fine-grain heterogeneity. We present a data aggregation method that, unlike current approaches, reduces the loss of information on fine-grain spatial structure in environmental heterogeneity for use with coarse-grain ecological datasets. Our method contains three steps: (a) define analysis scales (predictor grain, response grain, scale-of-effect); (b) use a moving window to calculate a measure of variability in environment (predictor grain) at the process-relevant scale (scale-of-effect); and (c) aggregate the moving window calculations to the coarsest resolution (response grain). We show the theoretical basis for our method using simulated landscapes and the practical utility with a case study. Our method is available as the grainchanger r package. The simulations show that information about spatial structure is captured that would have been lost using a direct aggregation approach, and that our method is particularly useful in landscapes with spatial autocorrelation in the environmental predictor variable (e.g. fragmented landscapes) and when the scale-of-effect is small relative to the response grain. We use our data aggregation method to find the appropriate scale-of-effect of land cover diversity on Eurasian jay Garrulus glandarius abundance in the UK. We then model the interactive effect of land cover heterogeneity and temperature on G. glandarius abundance. Our method enables us quantify this interaction despite the different scales at which these factors influence G. glandarius abundance. Our data aggregation method allows us to integrate variables that act at varying scales into one model with limited loss of information, which has wide applicability for spatial analyses beyond the specific ecological context considered here. Key ecological applications include being able to estimate the interactive effect of drivers that vary at different scales (such as climate and land cover), and to systematically examine the scale dependence of the effects of environmental heterogeneity in combination with the effects of climate change on biodiversity
    • 

    corecore