2,182 research outputs found

    Troubling Vulnerability: Designing with LGBT Young People's Ambivalence Towards Hate Crime Reporting

    Get PDF
    HCI is increasingly working with ?vulnerable? people yet there is a danger that the label of vulnerability can alienate and stigmatize the people such work aims to support. We report our study investigating the application of interaction design to increase rates of hate crime reporting amongst Lesbian, Gay, Bisexual and Transgender young people. During design-led workshops participants expressed ambivalence towards reporting. While recognizing their exposure to hate crime they simultaneously rejected ascription as victim as implied in the act of reporting. We used visual communication design to depict the young people?s ambivalent identities and contribute insights on how these fail and succeed to account for the intersectional, fluid and emergent nature of LGBT identities through the design research process. We argue that by producing ambiguous designed texts, alongside conventional qualitative data, we ?trouble? our design research narratives as a tactic to disrupt static and reductive understandings of vulnerability within HCI

    Anderson localisation in tight-binding models with flat bands

    Full text link
    We consider the effect of weak disorder on eigenstates in a special class of tight-binding models. Models in this class have short-range hopping on periodic lattices; their defining feature is that the clean systems have some energy bands that are dispersionless throughout the Brillouin zone. We show that states derived from these flat bands are generically critical in the presence of weak disorder, being neither Anderson localised nor spatially extended. Further, we establish a mapping between this localisation problem and the one of resonances in random impedance networks, which previous work has suggested are also critical. Our conclusions are illustrated using numerical results for a two-dimensional lattice, known as the square lattice with crossings or the planar pyrochlore lattice.Comment: 5 pages, 3 figures, as published (this version includes minor corrections

    Meeting the design challenges of nano-CMOS electronics: an introduction to an upcoming EPSRC pilot project

    Get PDF
    The years of ‘happy scaling’ are over and the fundamental challenges that the semiconductor industry faces, at both technology and device level, will impinge deeply upon the design of future integrated circuits and systems. This paper provides an introduction to these challenges and gives an overview of the Grid infrastructure that will be developed as part of a recently funded EPSRC pilot project to address them, and we hope, which will revolutionise the electronics design industry

    Critical phenomena in a highly constrained classical spin system: Neel ordering from the Coulomb phase

    Full text link
    Many classical, geometrically frustrated antiferromagnets have macroscopically degenerate ground states. In a class of three-dimensional systems, the set of degenerate ground states has power-law correlations and is an example of a Coulomb phase. We investigate Neel ordering from such a Coulomb phase, induced by weak additional interactions that lift the degeneracy. We show that the critical point belongs to a universality class that is different from the one for the equivalent transition out of the paramagnetic phase, and that it is characterised by effective long-range interactions; alternatively, ordering may be discontinuous. We suggest that a transition of this type may be realised by applying uniaxial stress to a pyrochlore antiferromagnet.Comment: 4 pages, 3 figure
    corecore