4,446 research outputs found
Bright tripartite entanglement in triply concurrent parametric oscillation
We show that a novel optical parametric oscillator, based on concurrent
nonlinearities, can produce, above threshold, bright output beams
of macroscopic intensities which exhibit strong tripartite continuous-variable
entanglement. We also show that there are {\em two} ways that the system can
exhibit a new three-mode form of the Einstein-Podolsky-Rosen paradox, and
calculate the extra-cavity fluctuation spectra that may be measured to verify
our predictions.Comment: title change, expanded intro and discussion of experimental aspects,
1 new figure. Conclusions unaltere
Global thermal pollution of rivers from thermoelectric power plants
Worldwide riverine thermal pollution patterns were investigated by combining mean annual heat rejection rates from power plants with once-through cooling systems with the global hydrological-water temperature model variable infiltration capacity (VIC)-RBM. The model simulates both streamflow and water temperature on 0.5° ×0.5° spatial resolution worldwide and by capturing their effect, identifies multiple thermal pollution hotspots. The Mississippi receives the highest total amount of heat emissions (62% and 28% of which come from coal-fuelled and nuclear power plants, respectively) and presents the highest number of instances where the commonly set 3 °C temperature increase limit is equalled or exceeded. The Rhine receives 20% of the thermal emissions compared to the Mississippi (predominantly due to nuclear power plants), but is the thermally most polluted basin in relation to the total flow per watershed, with one third of its total flow experiencing a temperature increase ≥5 °C on average over the year. In other smaller basins in Europe, such as the Weser and the Po, the share of the total streamflow with a temperature increase ≥3 °C goes up to 49% and 81%, respectively, during July-September. As the first global analysis of its kind, this work points towards areas of high riverine thermal pollution, where temporally finer thermal emission data could be coupled with a spatially finer model to better investigate water temperature increase and its effect on aquatic ecosystems
Quadripartite continuous-variable entanglement via quadruply concurrent downconversion
We investigate an intra-cavity coupled down-conversion scheme to generate
quadripartite entanglement using concurrently resonant nonlinearities. We
verify that quadripartite entanglement is present in this system by calculating
the output fluctuation spectra and then considering violations of optimized
inequalities of the van Loock-Furusawa type. The entanglement characteristics
both above and below the oscillation threshold are considered. We also present
analytic solutions for the quadrature operators and the van Loock-Furusawa
correlations in the undepleted pump approximation.Comment: 9 pages, 5 figure
Source integrals of asymptotic multipole moments
We derive source integrals for multipole moments that describe the behaviour
of static and axially symmetric spacetimes close to spatial infinity. We assume
isolated non-singular sources but will not restrict the matter content
otherwise. Some future applications of these source integrals of the asymptotic
multipole moments are outlined as well.Comment: 9 pages, 1 figure, contribution to the proceedings of the conference
"Relativity and Gravitation - 100 Years after Einstein in Prague", June
25-29, 2012, Pragu
Centrifugal Force and Ellipticity behaviour of a slowly rotating ultra compact object
Using the optical reference geometry approach, we have derived in the
following, a general expression for the ellipticity of a slowly rotating fluid
configuration using Newtonian force balance equation in the conformally
projected absolute 3-space, in the realm of general relativity. Further with
the help of Hartle-Thorne (H-T) metric for a slowly rotating compact object, we
have evaluated the centrifugal force acting on a fluid element and also
evaluated the ellipticity and found that the centrifugal reversal occurs at
around , and the ellipticity maximum at around . The result has been compared with that of Chandrasekhar and
Miller which was obtained in the full 4-spacetime formalism
Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator
We examine the feasibility of generating continuous-variable multipartite
entanglement in an intra-cavity quadruply concurrent downconversion scheme that
has been proposed for the generation of cluster states by Menicucci \textit{et
al.} [Physical Review Letters \textbf{101}, 130501 (2008)]. By calculating
optimized versions of the van Loock-Furusawa correlations we demonstrate
genuine quadripartite entanglement and investigate the degree of entanglement
present. Above the oscillation threshold the basic cluster state geometry under
consideration suffers from phase diffusion. We alleviate this problem by
incorporating a small injected signal into our analysis. Finally, we
investigate squeezed joint operators. While the squeezed joint operators
approach zero in the undepleted regime, we find that this is not the case when
we consider the full interaction Hamiltonian and the presence of a cavity. In
fact, we find that the decay of these operators is minimal in a cavity, and
even depletion alone inhibits cluster state formation.Comment: 26 pages, 12 figure
Generalized overlap quantum state tomography
We propose and experimentally demonstrate a quantum state tomography protocol
that generalizes the Wallentowitz-Vogel-Banaszek-W\'odkiewicz point-by-point
Wigner function reconstruction. The full density operator of an arbitrary
quantum state is efficiently reconstructed in the Fock basis, using
semidefinite programming, after interference with a small set of calibrated
coherent states. This new protocol is resource- and computationally efficient,
is robust against noise, does not rely on approximate state displacements, and
ensures the physicality of results.Comment: 19 pages, 10 Figure
Gyromagnetic ratio of rapidly rotating compact stars in general relativity
We numerically calculate equilibrium configurations of uniformly rotating and
charged neutron stars, in the case of insulating material and neglecting the
electromagnetic forces acting on the equilibrium of the fluid. This allows us
to study the behaviour of the gyromagnetic ratio for those objects, when
varying rotation rate and equation of state for the matter. Under the
assumption of low charge and incompressible fluid, we find that the
gyromagnetic ratio is directly proportional to the compaction parameter M/R of
the star, and very little dependent on its angular velocity. Nevertheless, it
seems impossible to have g=2 for these models with low charge-to-mass ratio,
where matter consists of a perfect fluid and where the collapse limit is never
reached.Comment: 11 pages, 6 figures, accepted for publication in Classical and
Quantum Gravit
Capacity estimation and verification of quantum channels with arbitrarily correlated errors
© 2017 The Author(s). The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment
Optimizing moxidectin dosing for Strongyloides stercoralis infections: insights from pharmacometric modeling
Moxidectin is a frontrunner drug candidate in the treatment of strongyloidiasis. A dose of 8 mg is recommended to treat this indication, which shows a reasonably good efficacy and tolerability profile. Yet, owing to the unique life cycle of Strongyloides stercoralis (S. stercoralis) that entails internal autoinfection, a curative treatment would be desirable. Population-based pharmacometric modeling that would help to identify an ideal dosing strategy are yet lacking. The aims of this study were to (i) explore the exposure-efficacy response relationship of moxidectin in treating S. stercoralis and (ii) evaluate whether moxidectin treatment outcomes in terms of cure rates at baseline as compared to post-treatment could be optimized. Our pharmacodynamic model suggests high predictive power (area under the concentration time curve-receiver operating characteristic [AUC-ROC] 0.817) in the probability of being cured by linking an exposure metric (i.e., AUC0-24 or maximum concentration [Cmax ]) to baseline infection intensity. Pharmacometric simulations indicate that with a minimum dose of 4 mg a maximum cure rate of ~ 95% is established in the low infection intensity group (larvae per gram [LPG] >/=0.4-1), whereas in the moderate-to-high intensity group (LPG >1) the cure rate plateaus at ~ 87%, following an 8 mg dose. To enhance efficacy further, studies using repeated dosing based on the duration of the autoinfection cycle, for example a two-dose regimen 3 weeks apart should be considered. Simulations revealed similar Cmax in both treatment courses of a two-dose regimen; hence safety should not be a concern. Collectively, our results provide evidence-based guidance for enhanced dosing strategies and should be considered when designing future treatment strategies
- …