63 research outputs found

    Non-universality of halo profiles and implications for dark matter experiments

    Get PDF
    We explore the cosmological halo-to-halo scatter of the distribution of mass within dark matter haloes utilizing a well-resolved statistical sample of clusters from the cosmological Millennium Simulation. We find that at any radius, the spherically averaged dark matter density of a halo (corresponding to the ‘smooth component') and its logarithmic slope are well described by a Gaussian probability distribution. At small radii (within the scale radius), the density distribution is fully determined by the measured Gaussian distribution in halo concentrations. The variance in the radial distribution of mass in dark matter haloes is important for the interpretation of direct and indirect dark matter detection efforts. The scatter in mass profiles imparts approximately a 25 per cent cosmological uncertainty in the dark matter density at the Solar neighbourhood and a factor of ∌3 uncertainty in the expected Galactic dark matter annihilation flux. The aggregate effect of halo-to-halo profile scatter leads to a small (few per cent) enhancement in dark matter annihilation background if the Gaussian concentration distribution holds for all halo masses versus a 10 per cent enhancement under the assumption of a lognormal concentration distribution. The Gaussian nature of the cluster profile scatter implies that the technique of ‘stacking' haloes to improve signal-to-noise ratio should not suffer from bia

    Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy

    Full text link
    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS), we find Reticulum II's J-factor to be among the largest of any Milky Way dSph. We have checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum II may provide a unique window on dark matter particle properties.Comment: 5 pages, 4 figures. Match the ApJL accepted versio

    Testing general relativity and probing the merger history of massive black holes with LISA

    Full text link
    Observations of binary inspirals with LISA will allow us to place bounds on alternative theories of gravity and to study the merger history of massive black holes (MBH). These possibilities rely on LISA's parameter estimation accuracy. We update previous studies of parameter estimation including non-precessional spin effects. We work both in Einstein's theory and in alternative theories of gravity of the scalar-tensor and massive-graviton types. Inclusion of non-precessional spin terms in MBH binaries has little effect on the angular resolution or on distance determination accuracy, but it degrades the estimation of the chirp mass and reduced mass by between one and two orders of magnitude. The bound on the coupling parameter of scalar-tensor gravity is significantly reduced by the presence of spin couplings, while the reduction in the graviton-mass bound is milder. LISA will measure the luminosity distance of MBHs to better than ~10% out to z~4 for a (10^6+10^6) Msun binary, and out to z~2 for a (10^7+10^7) Msun binary. The chirp mass of a MBH binary can always be determined with excellent accuracy. Ignoring spin effects, the reduced mass can be measured within ~1% out to z=10 and beyond for a (10^6+10^6) Msun binary, but only out to z~2 for a (10^7+10^7) Msun binary. Present-day MBH coalescence rate calculations indicate that most detectable events should originate at z~2-6: at these redshifts LISA can be used to measure the two black hole masses and their luminosity distance with sufficient accuracy to probe the merger history of MBHs. If the low-frequency LISA noise can only be trusted down to 10^-4 Hz, parameter estimation for MBHs (and LISA's ability to perform reliable cosmological observations) will be significantly degraded.Comment: 13 pages, 4 figures. Proceedings of GWDAW 9. Matches version accepted in Classical and Quantum Gravit

    The most dark-matter-dominated galaxies : predicted gamma-ray signals from the faintest milky way dwarfs

    Get PDF
    We use kinematic data from three new nearby, extremely low luminosity Milky Way dwarf galaxies (Ursa Major II, Willman 1, and Coma Berenices) to constrain the properties of their dark matter halos, and from these we make predictions for the γ-ray flux from annihilation of dark matter particles in these halos. We show that these ~10^3 L⊙ dwarfs are the most dark-matter-dominated galaxies known, with total masses within 100 pc that are in excess of 10^6 M⊙. Coupled with their relative proximity, their large masses imply that they should have mean γ-ray fluxes that are comparable to or greater than those of any other known satellite galaxy of the Milky Way. Our results are robust to both variations of the inner slope of the density profile and the effect of tidal interactions. The fluxes could be boosted by up to 2 orders of magnitude if we include the density enhancements caused by surviving dark matter substructure

    Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy

    Full text link
    This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the charac- teristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.Comment: Report from the Dark Matter Science Working group of the APS commissioned White paper on ground-based TeV gamma ray astronomy (19 pages, 9 figures

    The detection of sub-solar mass dark matter halos

    Full text link
    Dark matter halos of sub-solar mass are the first bound objects to form in cold dark matter theories. In this article, I discuss the present understanding of "microhalos'', their role in structure formation, and the implications of their potential presence, in the interpretation of dark matter experiments.Comment: 18 pages, 7 figures. Invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics

    Ultra-cold WIMPs: relics of non-standard pre-BBN cosmologies

    Full text link
    Weakly interacting massive particles (WIMPs) are one of very few probes of cosmology before Big Bang nucleosynthesis (BBN). We point out that in scenarios in which the Universe evolves in a non-standard manner during and after WIMP kinetic decoupling, the horizon mass scale at decoupling can be smaller and the dark matter WIMPs can be colder than in standard cosmology. This would lead to much smaller first objects in hierarchical structure formation. In low reheating temperature scenarios the effect may be large enough as to noticeably enhance indirect detection signals in GLAST and other detectors, by up to two orders of magnitude.Comment: Six pages, one figure- Extensive additions and rewriting with respect to v1. Figure change
    • 

    corecore