2,103 research outputs found

    The Dust Depletion and Extinction of the GRB 020813 Afterglow

    Get PDF
    The Keck optical spectrum of the GRB 020813 afterglow is the best ever obtained for GRBs. Its large spectral range and very high S/N ratio allowed for the first time the detection of a vast variety of absorption lines, associated with the circumburst medium or interstellar medium of the host. The remarkable similarity of the relative abundances of 8 elements with the dust depletion pattern seen in the Galactic ISM suggests the presence of dust. The derived visual dust extinction A_V=0.40+/-0.06 contradicts the featureless UV spectrum of the afterglow, very well described by a unreddened power law. The forthcoming Swift era will open exciting opportunities to explain similar phenomena in other GRB afterglows.Comment: To be published in "Il Nuovo Cimento", Proceedings of the 4th Rome Workshop on Gamma-Ray Bursts in the Afterglow Era, eds. L. Piro, L. Amati, S. Covino, B. Gendr

    Orbital Decay and Tidal Disruption of a Star Cluster: Analytical Calculation

    Get PDF
    The orbital decay and tidal disruption of a star cluster in a galaxy is studied in an analytical manner. Owing to dynamical friction, the star cluster spirals in toward the center of the galaxy. Simultaneously, the galactic tidal field strips stars from the outskirts of the star cluster. Under an assumption that the star cluster undergoes a self-similar evolution, we obtain the condition and timescale for the star cluster to reach the galaxy center before its disruption. The result is used to discuss the fate of so-called intermediate-mass black holes with >10^3 M(sun) found recently in young star clusters of starburst galaxies and also the mass function of globular clusters in galaxies.Comment: 12 pages, 1 PS file for 2 figures, to appear in The Astrophysical Journa

    The Angular Momentum Distribution of Gas and Dark Matter in Galactic Halos

    Full text link
    (Abridged) We report results of a series of non radiative N-body/SPH simulations in a LCDM cosmology. We find that the spin of the baryonic component is on average larger than that of the dark matter (DM) component and we find this effect to be more pronounced at lower redshifts. A significant fraction f of gas has negative angular momentum and this fraction is found to increase with redshift. We describe a toy model in which the tangential velocities of particles are smeared by Gaussian random motions. This model is successful in explaining some of the angular momentum properties. We compare and contrast various techniques to determine the angular momentum distributions (AMDs). We show that broadening of velocity dispersions is unsuitable for making comparisons between gas and DM. We smooth the angular momentum of the particles over a fixed number of neighbors. We find that an analytical function based on gamma distribution can be used to describe a wide variety of profiles, with just one parameter \alpha. The distribution of the shape parameter α\alpha for both gas and DM follows roughly a log-normal distribution. The mean and standard deviation of log(\alpha) for gas is -0.04 and 0.11 respectively. About 90-95% of halos have \alpha<1.3, while exponential disks in NFW halos would require 1.3<\alpha<1.6. This implies that a typical halo in simulations has an excess of low angular momentum material as compared to that of observed exponential disks, a result which is consistent with the findings of earlier works. \alpha for gas is correlated with that of DM but they have a significant scatter =1.09 \pm 0.2. \alpha_Gas is also biased towards slightly higher values compared to \alpha_DM.Comment: 19 pages, 32 figures (replaced to correct a typo in the authors field in the above line, paper unchanged

    Potential formation sites of super star clusters in ultra-luminous infrared galaxies

    Get PDF
    Recent observational results on high spatial resolution images of ultra-luminous infrared galaxies (ULIGs) have revealed very luminous, young, compact, and heavily obscured super star clusters in their central regions, suggested to be formed by gas-rich major mergers. By using stellar and gaseous numerical simulations of galaxy mergers, we firstly demonstrate that the central regions of ULIGs are the most promising formation sites of super star clusters owing to the rather high gaseous pressure of the interstellar medium. Based on simple analytical arguments, we secondly discuss the possibility that super star clusters in an ULIG can be efficiently transferred into the nuclear region owing to dynamical friction and consequently merge with one another to form a single compact stellar nucleus with a seed massive black hole. We thus suggest that multiple merging between super star clusters formed by nuclear starbursts in the central regions of ULIGs can result in the formation of massive black holes.Comment: 12 pages 4 figures, 2001, accepted by ApJ

    Some Global Characteristics of the Galactic Globular Cluster System

    Full text link
    The relations between the luminosities MVM_{V}, the metallicities [Fe/H][Fe/H], the Galactocentric radii RR, and the central concentration indices cc of Galactic globular clusters are discussed. It is found that the most luminous clusters rarely have collapsed cores. The reason for this might be that the core collapse time scales for such populous clusters are greater than the age of the Galaxy. Among those clusters, for which the structure has not been modified by core collapse, there is a correlation between central concentration and integrated luminosity, in the sense that the most luminous clusters have the strongest central concentration. The outermost region of the Galaxy with R>10R>10 kpc was apparently not able to form metal-rich ([Fe/H]>−1.0)([Fe/H]>-1.0) globular clusters, whereas such clusters (of which Ter 7 is the prototype) were able to form in some nearby dwarf spheroidal galaxies. It is not yet clear how the popular hypothesis that globular clusters were initially formed with a single power law mass spectrum can be reconciled with the observation that both (1) Galactic globular clusters with R>80R>80 kpc, and (2) the globulars associated with the Sagittarius dwarf, appear to have bi-modal luminosity functions.Comment: 15 pages, 1 figur
    • 

    corecore