3,033 research outputs found
Virtual EQ – the talent differentiator in 2020?
In an increasingly competitive, globalised world, knowledge-intensive industries/ services are seen as engines for success. Key to this marketplace is a growing army of ‘talent’ i.e. skilled and dedicated knowledge workers. These knowledge workers engage in non-routine problem solving through combining convergent, divergent and creative thinking across organizational and company boundaries - a process often facilitated though the internet and social media, consequently forming networks of expertise. For knowledge workers, sharing their learning with others through communities of practice embedded in new information media becomes an important element of their personal identity and the creation of their individual brand or e-social reputation. Part of the new knowledge/skills needed for this process becomes not only emotional intelligence (being attuned to the emotional needs of others) but being able to do this within and through new media, thus the emergence of virtual emotional intelligence (EQ). Our views of current research found that HRD practitioners in 2020 might need to consider Virtual EQ as part of their talent portfolio. However it seems that new technology has created strategies for capturing and managing knowledge that are readily duplicated and that a talent differentiator in 2020 might simply be the ability and willingness to learn
Making automation pay - cost & throughput trade-offs in the manufacture of large composite components
The automation of complex manufacturing operations can provide significant savings over manual processes, and there remains much scope for increasing automation in the production of large scale structural composites. However the relationships between driving variables are complex, and the achievable throughput rate and corresponding cost for a given design are often not apparent. The deposition rate, number of machines required and unit production rates needed are interrelated and consequently the optimum unit cost is difficult to predict. A detailed study of the costs involved for a series of composite wing cover panels with different manufacturing requirements was undertaken. Panels were sized to account for manufacturing requirements and structural load requirements allowing both manual and automated lay-up procedures to influence design. It was discovered that the introduction of automated tape lay-up can significantly reduce material unit cost, and improve material utilisation, however higher production rates are needed to see this benefit
Abundant Methanol Masers but no New Evidence for Star Formation in GCM0.253+0.016
We present new observations of the quiescent giant molecular cloud
GCM0.253+0.016 in the Galactic center, using the upgraded Karl G. Jansky Very
Large Array. Observations were made at wavelengths near 1 cm, at K (24 to 26
GHz) and Ka (27 and 36 GHz) bands, with velocity resolutions of 1-3 km/s and
spatial resolutions of ~0.1 pc, at the assumed 8.4 kpc distance of this cloud.
The continuum observations of this cloud are the most sensitive yet made, and
reveal previously undetected emission which we attribute primarily to free-free
emission from external ionization of the cloud. In addition to the sensitive
continuum map, we produce maps of 12 molecular lines: 8 transitions of NH3 --
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7) and (9,9), as well as the HC3N (3-2)
and (4-3) lines, and CH3OH 4(-1) - 3(0) the latter of which is known to be a
collisionally-excited maser. We identify 148 CH3OH 4(-1) - 3(0) (36.2 GHz)
sources, of which 68 have brightness temperatures in excess of the highest
temperature measured for this cloud (400 K) and can be confirmed to be masers.
The majority of these masers are concentrated in the southernmost part of the
cloud. We find that neither these masers nor the continuum emission in this
cloud provide strong evidence for ongoing star formation in excess of that
previously inferred by the presence of an H2O maser.Comment: 33 pages, 4 tables, 9 figures; ApJ Accepte
Expansion of anti-AFP Th1 and Tc1 responses in hepatocellular carcinoma occur in different stages of disease
Copyright @ 2010 Cancer Research UK. This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.Background: α-Fetoprotein (AFP) is a tumour-associated antigen in hepatocellular carcinoma (HCC) and is a target for immunotherapy. However, there is little information on the pattern of CD4 (Th1) and CD8 (Tc1) T-cell response to AFP in patients with HCC and their association with the clinical characteristics of patients.
Methods: We therefore analysed CD4 and CD8 T-cell responses to a panel of AFP-derived peptides in a total of 31 HCC patients and 14 controls, using an intracellular cytokine assay for IFN-γ.
Results: Anti-AFP Tc1 responses were detected in 28.5% of controls, as well as in 25% of HCC patients with Okuda I (early tumour stage) and in 31.6% of HCC patients with stage II or III (late tumour stages). An anti-AFP Th1 response was detected only in HCC patients (58.3% with Okuda stage I tumours and 15.8% with Okuda stage II or III tumours). Anti-AFP Th1 response was mainly detected in HCC patients who had normal or mildly elevated serum AFP concentrations (P=0.00188), whereas there was no significant difference between serum AFP concentrations in these patients and the presence of an anti-AFP Tc1 response. A Th1 response was detected in 44% of HCC patients with a Child–Pugh A score (early stage of cirrhosis), whereas this was detected in only 15% with a B or C score (late-stage cirrhosis). In contrast, a Tc1 response was detected in 17% of HCC patients with a Child–Pugh A score and in 46% with a B or C score.
Conclusion: These results suggest that anti-AFP Th1 responses are more likely to be present in patients who are in an early stage of disease (for both tumour stage and liver cirrhosis), whereas anti-AFP Tc1 responses are more likely to be present in patients with late-stage liver cirrhosis. Therefore, these data provide valuable information for the design of vaccination strategies against HCC.Association for International Cancer Research and Polkemmet Fund, London
Clinic
Emergence and correspondence for string theory black holes
This is one of a pair of papers that give a
historical-\emph{cum}-philosophical analysis of the endeavour to understand
black hole entropy as a statistical mechanical entropy obtained by counting
string-theoretic microstates. Both papers focus on Andrew Strominger and Cumrun
Vafa's ground-breaking 1996 calculation, which analysed the black hole in terms
of D-branes. The first paper gives a conceptual analysis of the Strominger-Vafa
argument, and of several research efforts that it engendered. In this paper, we
assess whether the black hole should be considered as emergent from the D-brane
system, particularly in light of the role that duality plays in the argument.
We further identify uses of the quantum-to-classical correspondence principle
in string theory discussions of black holes, and compare these to the
heuristics of earlier efforts in theory construction, in particular those of
the old quantum theory
A topos for algebraic quantum theory
The aim of this paper is to relate algebraic quantum mechanics to topos
theory, so as to construct new foundations for quantum logic and quantum
spaces. Motivated by Bohr's idea that the empirical content of quantum physics
is accessible only through classical physics, we show how a C*-algebra of
observables A induces a topos T(A) in which the amalgamation of all of its
commutative subalgebras comprises a single commutative C*-algebra. According to
the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter
has an internal spectrum S(A) in T(A), which in our approach plays the role of
a quantum phase space of the system. Thus we associate a locale (which is the
topos-theoretical notion of a space and which intrinsically carries the
intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which
is the noncommutative notion of a space). In this setting, states on A become
probability measures (more precisely, valuations) on S(A), and self-adjoint
elements of A define continuous functions (more precisely, locale maps) from
S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to
propositions about the system, the pairing map that assigns a (generalized)
truth value to a state and a proposition assumes an extremely simple
categorical form. Formulated in this way, the quantum theory defined by A is
essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical
Physic
Applying causality principles to the axiomatization of probabilistic cellular automata
Cellular automata (CA) consist of an array of identical cells, each of which
may take one of a finite number of possible states. The entire array evolves in
discrete time steps by iterating a global evolution G. Further, this global
evolution G is required to be shift-invariant (it acts the same everywhere) and
causal (information cannot be transmitted faster than some fixed number of
cells per time step). At least in the classical, reversible and quantum cases,
these two top-down axiomatic conditions are sufficient to entail more
bottom-up, operational descriptions of G. We investigate whether the same is
true in the probabilistic case. Keywords: Characterization, noise, Markov
process, stochastic Einstein locality, screening-off, common cause principle,
non-signalling, Multi-party non-local box.Comment: 13 pages, 6 figures, LaTeX, v2: refs adde
Recommended from our members
Emergence and correspondence for string theory black holes
This is one of a pair of papers that give a
historical-\emph{cum}-philosophical analysis of the endeavour to understand
black hole entropy as a statistical mechanical entropy obtained by counting
string-theoretic microstates. Both papers focus on Andrew Strominger and Cumrun
Vafa's ground-breaking 1996 calculation, which analysed the black hole in terms
of D-branes. The first paper gives a conceptual analysis of the Strominger-Vafa
argument, and of several research efforts that it engendered. In this paper, we
assess whether the black hole should be considered as emergent from the D-brane
system, particularly in light of the role that duality plays in the argument.
We further identify uses of the quantum-to-classical correspondence principle
in string theory discussions of black holes, and compare these to the
heuristics of earlier efforts in theory construction, in particular those of
the old quantum theory
- …