39,493 research outputs found
Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance
The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability
Twelve Theses on Reactive Rules for the Web
Reactivity, the ability to detect and react to events, is an
essential functionality in many information systems. In particular, Web
systems such as online marketplaces, adaptive (e.g., recommender) systems,
and Web services, react to events such as Web page updates or
data posted to a server.
This article investigates issues of relevance in designing high-level programming
languages dedicated to reactivity on the Web. It presents
twelve theses on features desirable for a language of reactive rules tuned
to programming Web and Semantic Web applications
On number fields with nontrivial subfields
What is the probability for a number field of composite degree to have a
nontrivial subfield? As the reader might expect the answer heavily depends on
the interpretation of probability. We show that if the fields are enumerated by
the smallest height of their generators the probability is zero, at least if
. This is in contrast to what one expects when the fields are enumerated
by the discriminant. The main result of this article is an estimate for the
number of algebraic numbers of degree and bounded height which generate
a field that contains an unspecified subfield of degree . If
we get the correct asymptotics as the height tends to
infinity
UAV as a Reliable Wingman: A Flight Demonstration
In this brief, we present the results from a flight experiment demonstrating two significant advances in software enabled control: optimization-based control using real-time trajectory generation and logical programming environments for formal analysis of control software. Our demonstration platform consisted of a human-piloted F-15 jet flying together with an autonomous T-33 jet. We describe the behavior of the system in two scenarios. In the first, nominal state communications were present and the autonomous aircraft maintained formation as the human pilot flew maneuvers. In the second, we imposed the loss of high-rate communications and demonstrated an autonomous safe “lost wingman” procedure to increase separation and reacquire contact. The flight demonstration included both a nominal formation flight component and an execution of the lost wingman scenario
Analysis and application of digital spectral warping in analog and mixed-signal testing
Spectral warping is a digital signal processing transform which shifts the frequencies contained within a signal along the frequency axis. The Fourier transform coefficients of a warped signal correspond to frequency-domain 'samples' of the original signal which are unevenly spaced along the frequency axis. This property allows the technique to be efficiently used for DSP-based analog and mixed-signal testing. The analysis and application of spectral warping for test signal generation, response analysis, filter design, frequency response evaluation, etc. are discussed in this paper along with examples of the software and hardware implementation
Strapdown calibration and alignment study. Volume 1 - Development document Final report
Calibration and alignment techniques for inertial sensing uni
Solution of an infection model near threshold
We study the Susceptible-Infected-Recovered model of epidemics in the
vicinity of the threshold infectivity. We derive the distribution of total
outbreak size in the limit of large population size . This is accomplished
by mapping the problem to the first passage time of a random walker subject to
a drift that increases linearly with time. We recover the scaling results of
Ben-Naim and Krapivsky that the effective maximal size of the outbreak scales
as , with the average scaling as , with an explicit form for
the scaling function
Per-Core DVFS with Switched-Capacitor Converters for Energy Efficiency in Manycore Processors
Integrating multiple power converters on-chip improves energy efficiency of manycore architectures. Switched-capacitor (SC) dc-dc converters are compatible with conventional CMOS processes, but traditional implementations suffer from limited conversion efficiency. We propose a dynamic voltage and frequency scaling scheme with SC converters that achieves high converter efficiency by allowing the output voltage to ripple and having the processor core frequency track the ripple. Minimum core energy is achieved by hopping between different converter modes and tuning body-bias voltages. A multicore processor model based on a 28-nm technology shows conversion efficiencies of 90% along with over 25% improvement in the overall chip energy efficiency
- …