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ABSTRACT

This is Volume 1 of three volumes which report the results of a strapdown calibration

and alignment study performed by the Univac Federal Systems Division for the Guidance

Laboratory of NASA/ERC.

This study develops techniques to accomplish laboratory calibration and alignment of

a strapdown inertial sensing unit (ISU) being configured by NASA/ERC. Calibration

is accomplished by measuring specific input environments and using the relationship

of known kinematic input to sensor outputs, to determine the constants of the sensor

models. The environments used consist of inputs from the earth angular rate, the

normal reaction force of gravity, and the angular rotation imposed by a test fixture in

some cases. Techniques are also developed to accomplish alignment by three methods.

First, Mirror Alignment employs autocollimators to measure the earth orientation of

the normals to two mirrors mounted on the ISU. Second, Level Alignment uses an

autocollimator to measure the azimuth of the normal to one ISU mirror and accelerom-

eter measurements to determine the orientation of local vertical with respect to the

body axes. Third, Gyrocompass Alignment determines earth alignment of the ISU by

gyro and accelerometer measurement of the earth rate and gravity normal force vectors.

The three volumes of this study are composed as follows:

Volume 1 - Development Document. This volume contains the detailed develop-
ment of the calibration and alignment techniques. The development is presented
as a rigorous systems engineering task and a step by step development of
specific solutions is presented.

Volume 2 - Procedural and Parametric Trade-off Analyses Document. This
volume contains the detailed trade-off studies supporting the developments
given in Volume 1.

Volume 3 - Laboratory Procedures Manual. In Volume 3 the implementation
of the selected procedures is presented. The laboratory procedures are
presented by use of both detailed step-by-step check sheets and schematic
representations of the laboratory depicting the entire process at each major
step in the procedure. The equations to be programmed in the implementation
of the procedures are contained in this volume.
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GLOSSARY

As an aid to understanding the symbolism, we present the following rules of notation:

Wherever possible symbols will be used which suggest the name of the
parameter involved.

Lower case subscripts are used almost exclusively for indexing over several
items of the same kind. Examples are the indexes used to identify the three
gyros, the three accelerometers, the two pulse trains of each accelerometer,
the two clock scale factors, etc.

Lowercase superscripts are used to index over different positions.

Uppercase superscripts and subscripts will be used to distinguish between
parameters of the same kind. For example, T is used to identify a

transformation matrix. Lettered superscripts such as BE in T BE identify

An underline will identify a vector.

Unit vectors are used to identify lines in space such as instrument axes
and the axes of all frames of reference.

Components of any vector along with any axis is indicated by a dot product
of that vector with the unit vector along the axis of interest.

The _reek sigma (_) wiii be used for summations. Where the limits of
summation are clear from the context, they will not be indicated with the
symbol.

The Greek _ is always used to indicate a difference.

S _ and C ¢ are sometimes used to identify the sine and cosine of the angle ¢.

A triple line symbol (:) will be used for definitions.

A superior "_'" denotes a prior estimate of the quantity.

A superior "^ "denotes an estimate of the quantity from the estimation routine.

ix
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a

(A_i.B_j)

A i

b

B_i

Applied acceleration

Elements of (QA)-I.

Unit vector directed
i = 1,2,3.

A vector determined
Procedure and input

Unit vector directed

vector.

along the input axis of the ith accelerometer

by the Alignment Parameter Evaluation
to the Estimation Routine.

along the ith Body Axis i = 1,2,3.

B I, B O, B S Gyro unbalance coefficients.

CII,Css,CIs,CI(_Cos Gyro Compliance Coefficients.

Counters

D o

The six frequency counters used as data collection devices
during calibration.

Accelerometer bias.

D 1 Accelerometer scale factor.

D 2 Accelerometer second order coefficient.

D 3 Accelerometer third order coefficient.

E

E i

Unit vector directed East (E2_

Unit vector directed along the ith Earth Axis.

Eq

fl' f2

F_i

Quantization error.

Frequencies of accelerometer strings 1 and 2, in zero
crossings per second.

A triad of orthogonal unit vectors attached to the base of the
table.

G i

(G_i. B_j)

Unit vector directed along the ith input axis of the gyro.

Elements of (QG)-I.

g The vector directed up that represents the normal force to
counteract gravity in a static orientation. Corresponding to
popular convention, this is referred to as the "gravity vector':

I/O Input/Output.
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IEU

ISU

J

K

m

M

M1

N

N 1, N 2

/1.

nG

_n ¢

_n_

_n2 r

O

oi

P

pG
k

QA

QG

Triad of orthogonal unit vectors attached to the inner axis of
test table.

Interface Electronics Unit - system interface device for the
laboratory computer.

Inertial Sensing Unit.

Gyro angular rate coefficient.

Number of samples of accelerometer and gyro data taken in
Alignment.

Position index used in calibration (superscript).

Matrix generated by Alignment Parameter Evaluation and used
by Alignment Estimation Routine.

Unit normal to ith mirror.

Unit vector directed North (E3).

Count of output pulses from strings 1 and 2 of accelerometero

Instrument noise in accelerometer.

Instrument noise in gyro.

Count of output pulses from strings 1 and 2 of accelerometer.

Count of timing pulses from master oscillator to frequency
counters.

Count of timing pulses from master oscillator to IEU.

Unit vector directed along the output axis of gyro.

Triad of orthogonal unit vectors attached to the outer axis
of the table.

Unit vector in the direction of the projection of M 1
formed by E and N.

in the plane

Defined on Chart 4-12 of the Development Document.

Defined on Chart 4-4 of the Development Document.

The transformation from accelerometer input axes to body axes.

The transformation from gyro input axes to body axes.
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R

R_i
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si

S _

s;

t

T
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TBRm
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--1

U

V

W

X-Y

Z

(_Y)ij

(__)i

Gyro dynamic coupling coefficients.

Position vector.

Gyro bias.

Triad of orthogonal unit vectors attached to rotary axis of
table.

Angular resolvers on each axis of the test table.

Unit vector directed along the ith gyro spin axis.

Scale factor associated with pulsed output from test table rotary
axis.

Scale factor associated with timing pulses accumulated by the
frequency counters,

Scale factor associated with timing pulses to the IEU.

Time.

In nIignment: the determined alignment matrix to transform

from body to earth axes. T is equivalent to T BE.

Transform from ISU body axes to inner axis frame.

Transform from ISU Body Frame Axes to Rotary Axis Frame in
the mth orientation°

Triad of orthogonal unit vectors attached to the trunmon axis

Unit vector directed up (El).

Velocity vector.

E
Unit vector directed along cc .

Dual input on frequency counter that will difference two pulse
trains for comparison with a third input (Z).

Input on frequency counter for pulse train.

The azimuth angle of the normal to the ith mirror.

Pulsed output from the jth string of the ith accelerometer.

Pulsed output of the ith gyro.
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SECTIONI

INTRODUCTION

This document, in conjunction with two other volumes, describes the achievements of a

six month study conducted for the:

by the:

Guidance Laboratory
Electronics Research Center

National Aeronautics and Space Administration
Cambridge, Massachusetts

Aerospace Systems Analysis Department
Univac Federal Systems Division
Saint Paul, Minnesota
A Division of Sperry Rand Corporation

The purpose of the study is to develop techniques and outline procedures for the labora-

tory calibration and alignment of a strapdown inertial sensing unit. This document,

Volume 1, presents a detailed analysis of the calibration and alignment problem and

develops a specific solution. The nucleus of the study output is the contents of this docu-

ment. The Procedural and Parametric Trade-off Analyses, Volume 2, is a set of

addendums which serve to justify decisions made and conclusions reached in the develop-

ment of specific calibration and alignment techniques. Reference is made to the contents

of the trade-off document throughout Sections 4 and 5 of this document. The Laboratory

Procedures Manual, Volume 3, describes specific procedures for an operational im-

plementation of the solutions obtained in Volume 1. It is an extension of the results of

Volume 1 into an operational laboratory situation. The last subsections of Sections 4

and 5 of this document (Volume 1) form the interface between the study developments and

the specific procedures found in Volume 3.

//
At the time of this writing, the Guidance Laboratory of NASA/ERC is in the process of

configuring a strapdown inertial sensing unit which they will use to evaluate many ad-

vanced concepts. By integrating this ISU with a system computer, they will attain a

flexible system level research tool for testing analytical concepts, system design con-

cepts and fabrication concepts. In parallel with the development of the Guidance and

Navigation System, a laboratory facility is being designed which will contain all of the

test equipment necessary for conducting the experiments on the strapdown G and N System.

1-1
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Among the more important experiments to be conducted are those which determine the

feasibility of easily and precisely calibrating and aligning the sensor package in an

operational laboratory situation. Before such experiments can be conducted, the cali-

bration and alignment techniques must be developed and definitively documented. The

Guidance Laboratory contracted Univac's Aerospace Systems Analysis Department to

develop and document those techniques. The specific tasks which Univac was contracted

to accomplish are as follows:

To specify mathematical models for the system sensors (gyros and accelerom-
eters).

To define the mathematical description of the sensor package.

To develop techniques for the determination of all calibration constants,

To develop three techniques for initializing the alignment of the ISU. The three
techniques involve the use of

• Optical measurements only
• Accelerometer measurements for level, and an optical azimuth measurement
• Accelerometer and gyro measurements only.

_Lt..;_ULII.LJ.LJ._,II _LJ_...IL.L£t:::;t,.J. t..,I. (::_._it_U.L.L d.I.L,_IL.Ly_.i._ UIL _t..I.JL _._I..L.I.L../JI. Ct.I._LUIL _LJLL.L _I..iL.L_:_II.L.LI_IIIt.

techniques.

To specify all equations and procedures for the accomplishment of a calibration
and alignment in the ERC Laboratory.

To document, in three volumes, the calibration and alignment developments,
trade-offs, and procedures.

The satis[action of the first four items is accomplished in this Development Document.

The trade-offs are described in the Procedural and Parametric Trade-off Analysis

Document and the procedures are outlined in the Laboratory Procedures Manual.
/7

7/

The presentation of the calibration and alignment developments in this document,

Volume 1, is divided into five sections. The purpose of the introduction is to briefly

state the study problem (accomplished in the above listing of seven items) and to describe

the developments contained in Volume 1. The purpose of Section 2 is to delineate the

calibration and alignment requirements. Section 3 presents a system description of

calibration and alignment with emphasis on the laboratory environment. The specific

calibration and alignment techniques are then developed in Sections 4 and 5, respectively°

As an introduction to the scope of this document, the following paragraphs outline the

developments in these sections.

The calibration and alignment study tasks have been only generally stated in the preceding

paragraphs. Before the technique developments can be described, the specific engineering

1-2



I

I

I

I

I
I

I
I

I
I

I
I

I

I
I

I

I

and mathematical requirements of calibration and alignment must be stated. In Section 2

we accomplish the detailed specification of those requirements. A statement of the cali-

bration and alignment requirements will be simply presented as a list of parameters to

be determined in the laboratory. As a lead-in to that listing, Section 2 shows how the

requirements tie in to the larger system problem of navigation. We accomplish this by

presenting the general definitions of calibration and alignment as the determination of

constants required in an operational navigation loop. The mathematics of portions of the

navigation loop are delineated so that calibration and alignment can be specifically defined

as the determination of constants contained within the mathematics.

After specifying the calibration and alignment requirements in Section 2, Section 3 directs

our attention to the laboratory environment in which the calibration and alignment is to be

accomplished. As an introduction to the environment, we present in the first subsection

of Section 3 functional system descriptions of both calibration and alignment. The func-

tional description of the ERC laboratory calibration is presented in comparison with what

we call an Ideal Calibration. The comparison of the ideal with the actual ERC laboratory

calibration serves to illustrate those compromises necessary in the development of a test

laboratory. The functional description of alignment presents those separate operations

required in an operational alignment. Three functional diagrams are presented in

Section 3. one for each of the three alternative alignment techniques° All functional

descriptions serve to define those measurements, other than inertial instrument measure-

ments, which are required to accomplish the calibration or alignment. The additional

measurements correspond to an independent measure of the kinematic environment. The

determination of tho,_e additional mea_urement,_ is the ._ubiect of the ._e.nnd ,qub,_etinn nf

Section 3. Section 3 is concluded with a brief description of the hardware available in the

laboratory, and the interfaces between those pieces of hardware.

The calibration technique developments in Section 4 are directed toward specifying the

details of the calibration functions which are generally defined in Section 3. The basis of

calibration is presented in Section 3 as the input of environment and inertial instrument

measurements into computations which are a function of those measurements and the un-

known calibration constants. The general equations from which the computations are

evolved are developed in the initial subsection of Section 4. Those general equations are

developed by introducing the parameters which identify the laboratory kinematic en-

vironment and the ISU geometry into the inertial instrument mathematical models. Subse-

quent to the development of the general equations, particular choices of test table orienta-

tion are used to define the "Positions" to be used for the determination of all calibration

I'_kJlli_Ldllt_* lll_ GIIU_II pUbltlUllb are _llUWll tU pl'Ul.lUl3l_ Dl_|llllGi_.llt I'gUUI3tIUII_ 111 UlI2 COi]]-

plexity of the general calibration equations. With the aid of these reductions it is

possible to solve for the calibration constants by a series of relatively simple experiments.

1-3
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In the third subsection of Section 4 the calibration computations are tabulated. The

quantization and instrument and environment noise considerations are described in con-

junction with the tabulation. The fourth subsection of Section 4 describes those laboratory

activities required prior to the actual calibration. All such activities are related to either

the survey of the location of the ISU relative to the test table, or the compensations for the

small low frequency motion of the test table base. The last subsection of Section 4 forms

the tie between this Development Document and the details of calibration implementation

presented in the Laboratory Procedures Manual, Volume 3o In Volume 1 the implementa-

tion of calibration is only briefly described, the details being left as the subject of

Volume 3.

The alignment techniques developed in Section 5 expand the functional descriptions of

alignment as presented in Section 3 into a set of alignment techniques. Alignment is

broken into three separate routines: preprocessing of sensor outputs, the application of

chosen estimation procedures to the preprocessed outputs, and calculation of alignment

matrices from the estimated values. Since the preprocessing and alignment matrix

calculations are developed in Section 2, the major emphasis in Section 5 is centered on

Before describing the development of an estimation technique, the basic functional re-

quirements and the preprocessing computations are presented, respectively, in the first

two subsections. The third subsection describes a detailed development of models for

the environmental disturbance and sensor noise. The next two subsections are then de-

voted to the development of two approaches for estimation in Level Alignment and Gyro-

compass Alignment. The first approach develops a procedure for estimating average

values of the gravity and earth rate vectors, while the second approach leads to estimates

of instantaneous values of these vectors. Estimation techniques are developed using three

basic statistical procedures: simple average, least squares, and posterior mean. From

these estimates the average and instantaneous values of the alignment matrices are then

obtained. The last subsection of Section 5 describes explicit equations for the recom-

mended alignment techniques, and ties the results of Section 5 to the procedural details

of alignment described in the Laboratory Procedures Manual.

1-4
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SECTION 2

CALIBRATION AND ALIGNMENT REQUI REIIIIENTS

The purpose of this study is to determine a procedure for the calibration of the NASA/ERC

strapdown inertial sensing unit (ISU) and to delineate three operational laboratory tech-

niques for the initial alignment of the same inertial sensor unit. Clearly, the initial task

in this, or any study, is to carefully describe the problem as a specifically defined study

task. This we propose to do in this section of our report.

The key words in the above general statement of the study purpose are the words "calibra-

tion" and "alignment". The first activity in this section will be to develop (in Section 2.1)

the definitions of those key words. Our approach to the development of those definitions

is to present a description of an operational navigation loop and, as a conclusion to that

description, to present calibration and alignment as the determination of constants re-

quired as inputs to the navigation loop. There are alternative approaches to the defini-

tions of these terms but we feel our approach is optimum in that it clarifies the necessary

relationship between the calibration and alignment problem and the larger system problem

of inertially navigating a propelled vehicle.

Subsequent to the navigation-system definition of calibration and alignment we will, in

Sections 2.2 and 2.3, describe the calibration and alignment requirements as they relate

to the ERC strapdown inertial sensing unit. Section 2.2 describes the calibration re-

quirements, and Section 2.3 describes the alignment requirements.

The development of the calibration requirements in Section 2.2 will be directed toward

the tabulation of the instrument constants and instrument-to-body-axes transformation

matrix constants which are necessary in an operational navigation loop. The first

activity in that section will be the description of the geometry of the ERC ISU. This will

be followed by a description of the inertial instruments contained in that ISU. The in-

strument-to-body-axes transformation matrices will then be described. All of the

described equipment and geometry will then be used to develop the navigation loop "Pre-

processing Computations". Finally, the constants in the Preprocessing Computations

will be defined as the constants to be obtained in calibration.

In Section 2.3 the alignment requirements will be described as the real-time measurement

of the ISU fixed or earth-fixed coordinates of two vectors. Three alternative choices of

these two vectors will be presented. The geometry of alignment will also be presented.
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The final presentation will be the specific alignment matrix mathematics corresponding to

the three alternative alignment techniques.

2.1 DEFINITION OF CALIBRATION AND ALIGNMENT

The necessity for a calibration and alignment of an inertial sensing unit is directly related

to the use of the ISU in a vehicle guidance system. More specifically, calibration and

alignment requirements are related to the necessity for a real-time transformation of the

ISU instrument outputs into a best estimate of a vehicle's velocity and position. In this

section we will, from a discussion of real-time inertial guidance activities, define the

general calibration and alignment requirements.

The functional diagram shown in Figure 2-1 serves as a description of the initial activities

in a real-time navigation loop. That diagram will be the focal point of our attention for

the remainder of this subsection. Figure 2-1 shows only that portion of the navigation

loop which transforms instrument outputs into estimates of velocity and position. (The

remaining portions of the loop are the guidance logic, automatic control, and dynamic

The input to the ISU is the kinematic environment of the vehicle and ISU as represented

by the applied acceleration a and angular velocity __w. The outputs of the ISU are (usually)

sequences of pulse counts taken over small intervals of time. These outputs are the in-

puts to the computer. The computer's immediate task is to convert those measurements

into a knowledge of velocity and position. The velocity (v) and position (r) must be rep-

resented as components (v. D k) and (r. D k) in the frame (Dk) in which one chooses to

navigate (D k represents a triple, k = 1, 2, 3, of unit vectors directed along the orthogonal

navigation axes).

The initial activity in the conversion to velocity and position is the transformation of the

pulse counts into estimates of the integrals of the instrument-axes components of applied

acceleration and angular velocity. The instrument axes are represented by the triads

A k and G k of (in general) nonorthogonal unit vectors directed along the input axes of the

accelerometers and gyros, respectively.

The second activity, in the conversion to velocity and position, is the transformation of

the integrals of the instrument-axes components of applied acceleration and angular

velocity into integrals of body-axes components. The body axes (Bk) are a triad of

orthogonal unit vectors which are fixed to the ISU. These body axes can be defined in

various ways. They can be defined by use of any two of the instrument axes or they can,
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as they are in this study, be defined by use of two mirror normals. (The manner in

which this definition is accomplished for the ERC system will be found in Section 2.2. )

The final activity in the conversion of instrument outputs into navigation-axes components

of velocity and position begins with the input of the body-axis integrals of applied accel-

eration and angular velocity to the translational and rotational differential equations of

motion. The numerical solution of those differential equations yields the desired velocity

and position. The solution of the rotational differential equations serves to transform

the argument of the translational differential equations into navigation-axes components.

The output of the translational differential equations solution is then the desired com-

ponents of velocity and position.

It is noted that various constants are required from computer memory as inputs into all

routines. The initial routine requires those instrument constants which scale and

correct the instrument outputs. The second routine requires the nonorthogonal three-by-

three matrices, QA and QG, which transform the integrals of the instrument-axes

components into the integrals of the body-axes components. The third routine, being

the solution of differential equations, requires initial conditions. The initial condition

for the rotational differential equation solution is an initial body-to-navigation-axes

transformation matrix. The initial condition of the translational differential equation

solution is an initial knowledge of navigation-axes components of velocity and position.

A knowledge of all of these constants is required prior to any operational use of the ISUo

The development of the numerical values of these constants can be divided into three

separate problems; and the statement of two of these problems can be used as a defini-

tion ...................
Ol {JlatIIUI'Ia_LIUII i:tllU i:tll_lllll_llt,

The problem of determining the instrument constants used in the first routine, and the

QA and QG matrices used in the second routine, will be considered in this report as the

problem of calibration. The problem of determining the initial body-to-navigation-axes

transformation matrix will be referred to as the alignment problem. The remaining

problem of initializing velocity and position is an operational problem, which is not

within the scope of this work.

We will extend these definitions to the subject ERC strapdown ISU. Specifically, we will

delineate more detailed definitions in terms of the geometry and instruments charac-

terizing the ERC system. Section 2.2 will treat calibration, and 2.3 alignment.
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2.2 CALIBRATION REQUIREMENTS

It was seen in the preceding subsection that calibration is defined as the determination

of those instrument constants and constant matrix transformations required in the

transformation of instrument outputs into integrals of body-axes components of applied

acceleration and angular velocity. In this section we will describe the equations in the

navigation routines which utilize the calibration constants. We will specify those

equations with the assumption that the ERC strapdown ISU is the subject sensor unit.

From that description, we can then specifically describe the calibration requirements

as the determination of the constants contained within those navigation routines.

The desired equations are directly deducible from the geometry of the ISU and the

mathematical models of the instruments. We therefore begin the presentation in this

section by describing the geometry of the strapdown ISU, followed by a description of

the accelerometers and gyros contained within the ISU. Following those descriptions

we will define the QA and QG matrices. Next we will employ all of this information to

develop the desired equations; and finally we will utilize those equations in the tabulation

of the required calibration constants.

2.2.1 ISU Geometry

The ERC ISU is a strapdown sensing unit containing:

• Three vibrating-string accelerometers

• Three single degree of freedom gyros

• One mirror cube

• Associated structural and electronic devices.

The strapdown ISU has been specified such that the accelerometer input axes (Ak), the

gyro input axes (Gk) , and three mirror normals (_M_Mk)are nominally orthogonal and

nominally aligned. In implementing the specification, there will naturally be deviations

of small angles between the supposedly aligned instrument and mirror axes. In

Figure 2-2 an exaggerated representation of those deviations from nominal is shown. It

will be assumed in this study that the cosines of the angles between supposedly aligned

vectors are equal to one and the cosines of the angles between supposedly orthogonal

vectors are equal to small first order numbers.

Additional geometry required in subsequent developments is the nominal location of the

gyro output (Ok) and spin (Sk) axes relative to the input axes already described. Those

nominal locations are shown in Figure 2-3.
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It is always convenient, in inertial navigation, to define, from the geometry of the ISU, a

set of orthogonal unit vectors which represent a common "body set of axes" to which all

accelerometer and gyro outputs can be referred. The definition of those body axes is

usually arbitrary; that is, any two ISU fixed vectors can be used° For the purpose of this

study we will utilize two mirror normals. The body axes for the subject ISU are defined

by

B I :M I

B2 :(_M1 x__M2)x MI/ _M1x M 2

B 3 =(M lx_M2)/[M 1 x_M2

This definition is shown schematically in Figure 2-4.

2.2.2 Accelerometer Model

A schematic of the accelerometer is shown in Figure 2-5. The accelerometer consists

ul twu iiiasses separated a _, ,,,_ .t,,,
;3U}/_UItlCU J.UI _._13:llt_J. lll_ I,./U.LJ:JL/_._.'3 Ujv kW',J

(S 1 and S 2) and ligaments normal to S 1 and 5 2 . When the accelerometer is at rest or

moving with constant velocity, the sum of forces acting on the masses is zero° When the

instrument is accelerated, the sum of forces will adjust to cause the masses to move with

the same acceleration. Strings S 1 and S 2 will change in tension as a function of the com-

ponent of acceleration along the strings. (This direction is the sensitive axis of the in-

strument. ) Since the resonant frequency of a vibrating-string is a function of its tension,

the frequency of strings S 1 and S 2 may be read and converted to acceleration along the
sensitive axis.

The math model of the accelerometer is presented on Chart 2-1. The outputs from the

accelerometer are the pulse counts, N 1 and N2, representing the number of zero

crossings from strings S 1 and S 2 in the time interval t_-*t b. Since the counting process

can start and terminate at a fixed time for any sample, a quantization error (represented

by Eq) of up to two counts (one per string) may occur. A fixed bias (D o) is assumed.

The entire output is multiplied by the scale factor D 1. The second and third order co-

efficients (D 2 and D 3) are extremely small.

In developing the model (see Appendix A) several assumptions were made. The most

critical are:

1. The accelerometer has negligible instrument noise.

2. The effects of terms higher than the third order are negligible.
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I MAGNET I

2I-_-_ _ _

SENSITIVE
AXIS

_f2

J"-Av

Model: ARMA D4E Vibrating String Accelerometer

Axis: A is a unit vector directed along strings S 1 and S2

(the sensitive axis)

Figure 2-5. A Schematic Diagram of the Accelerometer
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CHART2.-1
THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

WHERE :

t b tb t b

fta f2 dt - ft a fldt = (R2-N1)+ Eq = D 1 t a

(a.A)dt

+ D 1 _[tbcD0+D2(a.A)2 +D3(a.A)37dt _

ta

e a is the acceleration applied to the accelerometer

• t a -<t _ t b is the time interval over which a is measured

• A is a unit vector directed along the input axis of the accelerometer

• N 1 and N 2 are the number of zero crossings detected in t a < t _ t b

from both strings of the accelerometer

• Eq is the instrument quantization error due to the fact that t a and tb

do not correspond to zero crossings

• D 1 is the accelerometer scale factor

• D O is the accelerometer bias

• D 2 is the second order coefficient

• D 3 is the third order coefficient

• f2 and fl are string frequencies in pulses/second
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3. There are no cross coupling effects.

4. The strings are colinear.

2.2.3 Gyro Model

The gyroscopes used in the ERC strapdown ISU are Honeywell GG334A single degree of

freedom, pulse rebalance gyros. The gyros contain a gimballed rotor as shown in

Figure 2-6. The rotor spins at a high angular rate. The gimbal is restrained by the

gimbal bearings to rotate with respect to the case about the O axis only as shown in the

figure. Any angular motion of the gyro case about the input axis, G, will generate a

gyroscopic torque that tends to rotate the gimbal about O. A signal generator measures

the gimbal deflection. The deflection is compared at a 3.6 KHz rate with two equal

thresholds of opposite sign and a positive, negative, or zero pulse is generated, based

on the results of the comparison. This signal is sampled by the readout electronics and

fed to a torque generator where a torque pulse is generated to offset the deflection.

The model of the gyro is given on the accompanying chart. (See Appendix B for a deriva-
N

*_^_v,,._j ._'r" "'_K _'_ *_'_.__^*,,vtcount of- _-:*-'vu_.t.v_...... a,,u'_ .............,_t_v_,-vua.d,,_'............... tuvqu_. ,-,w^....._ t,le _cale
k=l t N

factor of the instrument. The term _0 (_'G) dt is the desired information from the in-

strument, and is equal to the integral of the angular velocity component along the sensi-

tive axis. R is a fixed bias term. The three terms with coefficients, BI, B O and B S

are due to the fact that the center of force of the gimbal support differs from the gimbal

center of mass, causing a torque proportional to acceleration (mass unbalance effect).

Terms with coefficients CII, CSS , CIS , COS and CIO arise because of the deformations

of thc gimbal, caused by acceleration forces that produce mass unbalance effects. The

term with QII coefficient is due to scale factor nonlinearities. The QIS term is due to

the differences of moments of inertia about S and O. The term containing J is the

effect of dynamic coupling because of finitegimbal inertia,

2.2.4 Q Matrices

In Section 2.1 we defined the QA and QG matrices as those constant matrices which

transform the integral of the instrument-axes components of applied acceleration and

angular velocity into the integrals of the body-axes components of the same vectors.

In this subsection we will specifically define those matrices.

First, the QA and QG matrices, as suggested by the superscripts, transform, re-

spectively, the integrals of the accelerometer-axes components and the integrals of the

gyro-axes components. Second, QA and QG, being constant matrices, transform all
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Axe s:

Honeywell GG 334A single-degree-of-freedom, pulse

rebalance gyroscope.

S is a unit vector along the spin axis of the rotor.

O is a unit vector along the output axis as defined by

the gimbal.

G = O x S is the sensitive axis of the gyro.

Figure 2-6. A Schematic Diagram of the Gyro

2-13

FROM
TIMER

3.6KC

SYNCHRONIZED

INTERROGATOR

READ
v OUT

I



I

CX__nRT 2-2

I

I

I

I

I
I

I
I

I
I

I
I

I
I

I

THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS:

A¢ = _"tN(w.G) at + +Sl(a.G ) + Bo(a.O ) + Bs(a.S ) + Cll(a.G)2 Css(a.S)2

Jt0 - _

+ CIS(a.G) (a.S) + Cos(a.O)(a.S) + CIO(a.G ) (a'O)

°o i+ QII (_'G) 2+ QIS(W-G)(c_.S)+ J _ (__-_ dt + An+ Eq

WHERE

is the angular velocity applied to the gyro

_a is the acceleration applied to the gyro

t O _ t _ t N is the time interval over which a and _ are measured

t N - t O = Nr, where N is an integer, andr is the gyro sampling

period

S is a unit vector along the spin axis of the rotor

O_ is a unit vector directed along the output axis as defined by the

gimbal

G is a unit vector along O x S (that is, the sensitive axis of the gyro)

bk is the kth gyro pulse, equal to ÷1, -1, or 0 for positive, negative,

or no pulse

A¢ is the gyro scale factor

R is the gyro bias

B I B O and B S are the gyro unbalance coefficients

CII CSS CIS COS and CIO are the gyro compliance coefficients

QIS and QII are dynamic coupling coefficients due to gimbal deflection

and scale factor nonlinearity, respectively

J is the angular rate coefficient

An is the effect of gyro noise over the :t0, tN_ interval

Eq is the gyro quantization error
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triples of vector components between the frames, not just the integrals of those vector

components. (That is, the Q matrices can be taken in and out of the integral at will_ )

Therefore, we can say that QA and QG are defined by:

[°!]I][!]B2 : Q A 2

; a

B2 : Q G_2

B G3

It will be seen in Section 4 that calibration determines not QA and QG but (QA)-I and

(QG)-I. We therefore need to deduce the matrices from their inverses. From the

geometry presented in Section 2.2o 1 it is seen that the QA and QG matrices are approxi-

mately identity matrices. This fact makes the deduction of the matrices from their in-

verses quite simple. In the accompanying chart that deduction is presented. Note, in

Chart 2-3, that the inverses appear, at quick glance, to be orthogonal (that is the eie-

ments are "direction cosines"). This apparent orthogonality results from B k being

orthogonal. However G k and A k are not, in general, orthogonal, and therefore the in-

verse matrices are also not orthogonal.

In Appendix C alternate forms of the QA and QG matrices are presented. Those forms

a,',_ t,,noiln.¢ n_ tho eonn,'atinn-_ncrlo_ hotwoon tho ,,nit-vectors contained within the ISC.

Even though we will not specifically present techniques for finding separation-angles, the

reader may be interested in those forms for the purpose of deducing separation angles

from the calibration-determined (QA)-I and (QG)-I elements.

2.2.5 Preprocessing Computations

In this section we will show how the ISU geometry and mathematical models lead to the

specific equations found in the initial computational routines of a navigation loop. Those

equations, which we call the Preprocessing Computations, include all of the constants

which must be determined during a laboratory calibration.

Referring to the flow diagram presented in Figure 2-1 we see that the initial routine in

the navigation loop is the transformation of the instrument outputs into a knowledge of the

integrals of the instrument-axes components ul..........app_l_u_ ,tt_._ at_,'.... : ...... a,,_,'_,_,,_u_,_'..... __,,,_,_.'_+."

Referring to the instrument models, we see that the models represent functional rela-

tionships between the inputs and outputs of the initial navigation routine. (This statement,

2-15
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Determination of QA and QG from (QA)-I and (QG)-I

• The calibration determines not QA and QG

• The inverse matrices have the form:

but (QA)-I and (QG)-I.

(QA)-I

(QG)- 1

-A_I.B I) (A_I" _B2) (A_1" B_3)-]

= I (A2 _1 ) (A_2" B 2) (A 2 B3) I

[_(_A3 B1) (A3"B 2) (A_3" B_3)__

I_ • . B3)-_I" B1) (G1 B-2) (G-1

= I(G2. (G 2 B 2) •

_ (_3" B1) - " (G2 B-3)B_1) (G3" B_2) (G_3 B_3)__

Because of the excellent mechanical specifications on the strapdown ISU, each
of +_'_ _h ...... ÷_,,_e ,,,ill h._,,_ nn_e nn th_ Aia_nn_l¢ nnrl first nrdor am_ll
quantities on the off-diagonal. That is, each matrix can be written as:

I+E

where I is the identity matrix and E is a small off-diagonal matrix.

The inverse of (I + E) (to first order) is (I - E).

The QA and QG matrices can, therefore, be written as:

QA

QG

__( 1 -(51" B 2) -(51" B_3)= A 2 • B_I) 1 -(A 2 • B_3)

I-(63 . B-l) -(63" B-2) 1

_.(G 1 -(G 1" B 2) -(G_I" __

= - (G 2 • _B1) 1 - (G_2

-3" B-l) -(G3" B2) 1

where all elements within the matrices are found in calibration.
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of course, assumes that quantization and noise are neglectedo) The mathematical model,

functional relationships are not, however, explicitly in the form: routine output = f (rou-

tine input). To the coatrary, the relationships are the inverse: routine input = g (routine

output). The desired navigation equations must therefore result from an inversion of the

instrument mathematical models.

The inversion of the models is quite a simple matter. This is due to the fact that each

instrument is designed to be a linear instrument; therefore, all "nonlinear" terms are

the result of design deficiencies and therefore are quite small relative to the proportional

term plus bias° We conclude then that all "nonlinear" terms can be approximated by

functions of the instrument outputs. The following discussion shows how this is accom-

plished.

The accelerometer model (neglecting quantization and noise) has the form:

AN = DlJ'(a. A) dt + D1DoJ dt + higher order terms

the time period over which the integrations in the equation are made. In the following

discussions, this time period will always equal At.

As a first order approximation,

1

f(a.A) dt = --(AN- D1DoAt )
D 1

Let us define

(a. A) At : S (a. A) dt

f (a. A) d t 1

= (aN - D1DoAt )
or (a. A) = f dt D1At

We can see that (a. A) is, from the mean value theorem of calculus, a value of (a. A)

somewhere in the time period of integration.

Referring to the second order term

,I (a--:----AA)2 d t

2-17
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which can be written

(a. A)2At

We see that, when the period of integration is chosen short enough that (a. A) is essentially

constant over each period, then it can be assumed that:

(a.A) 2 = (a.A) 2

(This is a very good approximation, considering the fact that the coefficient of the square

term is quite small.) From all of the above statements we can therefore infer:

[ 1 _2
f(a.A)2dt = --(AN-DID A At

D1At o

Similarly, the cubic term can be written as

_(aoA)3dt = (AN- DIDoAt At

The expression for (a • A) can also be used to determine the gyro unbalance integrals from

the approximations:

j_(a. Gk) dt : !_(a. Ak) dt

_I(a- Ok) d t
0

= 1

1
:1 dtj0 1 Ij" (a. A1)

0 I j'(a. A2) dt

0 _! (a. A3) dt

(See Figure 2-3.)

(a. Sk) d t

where [(a_. Ak)dt -

[01!] ldt10 0- I!(_a A2)dt

0 1 _(_a A3) dt

1

(DI) kl (AN)k - (DiDo)kAt ]

(We have refrained from using the instrument index k until it was absolutely essential.

This served to keep the notation as simple as possible. )
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The compliance integrals are found to be similar to the higher-order accelerometer terms.

We note that all of the gyro approximations utilize the outputs of the accelerometers to

compensate for the gyro acceleration-sensitive terms.

After all approximations, we will have equations of the form:

The QA and QG

(a. Ak) dt = f (_tccelerometer outputs)

S (_c. Gk) dt = g(accelerometer and gyro outputs)

matrices can then be used to find:

A _(a._!(a. Bk) dt= _Qk4 _A4) dt

C _ (_. G4)dt(_.Sk) dt = EQk_.

The above statements lead to the complete set of computations, which are found on the

following chart. We will henceforth, in this document, refer to those equations as the

Preprocessing Computations. The following nomenclature is required for the understand-

ing of the Preprocessing Computations:

• (_1 and (_)k2 are the counts from the one and two strings of the k th
accelerometer.

_- _k _ the ce.,_-.t _-_ _h_ t. th .....

• sT2 is the clock scale factor (the subscript 2 serves to distinguish this scale
factor from another used in calibration).

• (En T) is the count from the system clock. All other terms have been
previously defined.

2.2.6 Calibration Requirements

The Preprocessing Computations developed in the preceding subsection are seen to be a

function of a great number of constants. Those constants were, in Section 2.1, defined

as the constants to be calibrated. An explicit statement of the calibration requirements

is therefore the determination of the quantitative value of the constants contained within

the Preprocessing routine. In Chart 2-5 those constants are listed. As a matter of

convenience, the nominal values, ranges, and precision requirements, where available,
aide given.
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CHART 2-4

PREPROCESSING COMPUTATIONS

The outputs j't t+at (f'Bk)dt and j't t+At (a._Bk)dt (k = 1, 2, 3) are given by the following

computations:

• PAk :-[(_7)k2 - {_Y)kl _

• pG _ (ES) k

•
• _(__.Gk)_t" _ pG(A_)k - (R)kAt

• _(a.Ak) At] _ PA/(D1) k- (Do) k At

• (,'.Gk) _ _(_.Gk) Ate/At

• (a-Ak) _ E(a °Ak) Ate/At

• (a.G_k) e (a.A k)

oojL;; ,jL"

-ol o] q

Lo
• ',t*At(_:-G_,)dt = _ (¢z.Gt,)At -, (Bz)v(a.G_)+(Bn)t_(a.Ot_)_(B_)_(aoSt_) _At

- .(CiI)k(_) 2 _ (Css) k (_a. Sk)2 at

- t (Cis)k(a. Gk)(a. _Sk) + (Cos)k(a. Ok)(a. _Sk) + (Cio)k(_a.Gk)(a.Ok)-at

- : (Qii)k(_) 2 * (QIS)k(_)(_)at

• 't+AtlaoAk)dt = (a. Ak)At" - (D2)k(_a'-A_--.k)2At - {D3) k (a. Ak_3at
_t '----" " " ' -- =-="

O . t*At_ ,.
• " t+A_'-Bk)dt = EQk_ "t _w._-,,)dt

_A t-At(a A )dt
• ft t+At(-a'-Bk)dt = ' Wkt _t -'-'

where

__(_G 1 -(G-l" _B2) -(C,I" B 3) .

• QG (G21 B3)[

= -2" B1) I - ,

_3" BI) -(G-3'-B2)

• QA _ _ 1 (A-2 _

k_ 3.B 1) -(A 3.B_2)
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I LISTING OF CALIBRATION PARAMETERS I

CHART 2-5

Accelerometer coefficients

Nominal Value Range Precision

252 -' 256

!
I
I
i
I

Name and Units

(Pulses ,
D1 \ sec / g

254

10 -1

D3(g/g3)

DO(g)

D2(g/g2) 0

27 x10 -6 (26 _ 28) x10 -6

(A_k" B k)

(Ak- B_)

1 0

0

0 _ 2x10 "I

13x10 -6

AD1/D 1 = 2x10 -6

AD O = 7 x 10 -5

I
I

I

i

i

I
I

I
I
i

G.vro Coefficients

Name and Units Nominal Value Range Precision

Ae_deg/pulse) 3.3 x 10 -3 A(Aa,)/A_ = 10 -4

R(deg/hr) 0 __2 A R = 0. 005

0 =1Bi(deg/hr/g)

Bo(de_ 'hr/g) 0 =i

Bs(deg 'hr/g) 0 :1

Cii(deg;Zhr/g2) 0 = 0o 04

Css(deg/hr/g2 ) 0 =0.04

Cis(deg/hr/g2 ) 0 =0o 04

0 =0.04Cos(deg/hr/g2)

Cio(deg/hr/g2) 0 negligible

Q (hr/deg) 0II :

Q (d_eg _/( rad_ 2 4
• IS)hr Y _sec /

(G k • Bk ) 1 0

0(G_ko B_z)
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Note that a great number of the constants have a nominal value of zero. Note also that

the accelerometer bias term is the only term which has a nominal value which appreciably

affects an instrument output (that is, a_fects the output over and above the effect of the

linear term). The relatively large value of the bias term accounts for the bias being

utilized in the preceding subsection as a part of the higher-order term approximations.

Only the precisions of the bias and scale factor are given. The scale factor precision is

presented as a relative requirement (ratio of uncertainty to magnitude). The bias

precision is presented as an absolute error. It will be shown in the trade-off document

that the errors in each of the other terms act as either a scale-factor-like or bias-like

error. Therefore, all precisions are irLferred from either the scale factor or bias

precision.

2.3 ALIGNMENT REQUIREMENTS

In Section 2.1 alignment was defined as the initialization of the matrix which transforms

from an ISU-fixed frame of reference (body axes) to a navigation frame. In this section

_,,,. ,_,,_n_,_ _ +_ _vnl_th, s_te the re_,_,,,_L'_ement_ far d_f_vrnlnlng that rn_fri_ 9"hr_

alternative techniques will be presented. The definition of the three alignment techniques

will be presented in Section 2.3.1. The alignment requirement associated with each

technique will be found to be the measurement of either the body-axes or earth-axes

components of two system vectors. In Section 2.3.2 the geometry associated with the

alignment techniques will be presented. The explicit functional form of the alignment

matrix for all three techniques will be delineated in Section 2.3.3.

2.3.1 Definition of Three Alignment Techniques

Alignment has been defined as the initialization of the body-to-navigation-axes transfor-

mation matrix. For the subject ISU, the body axes (Bk) are defined by the normals to
two ISU-fixed mirrors (see Section 2.2o 1). For the purpose of this study, we will assume

that the navigation axes are aligned with a set of local-level earth axes (Ek) , where

E 1 is directed up (along the line of local gravity)

E 2 is directed east (normal to the local meridian)

E 3 is directed north (normal to E 1 and E2) .
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(Throughout the text we will, at times, also refer to the earth axes as U, E, and N, where

U = E 1

E = E 2

N : E 3

I
I

I

We can now more explicitly define the alignment problem as the determination (at some

time, say t) of the 3x3 orthogonal matrix T, where T is defined by:

E 2 = = T B 2

E3 _B3

I

!
I

I
I

I

I

There are numerous techniques for determining the elements of the matrix To Each

technique considered in this report is based upon expressing the matrix functionally in

terms of the components of two vectors (which are known, in an operational situation)

in both the body- and earth-fixed frames. The typical operational situation would be

an earth-fixed orientation of the ISU. Assuming that the operationally available meas-

uring devices to be used during alignment are any combination of three gyros, three

accelerometers, or two two-degree-of-freedom autocollimators, then the vectors which

can be used to functionally define the T matrix are:

• J. Ile tlIllL Inlllol IIUL'IIIetJ.D lvl 1 ..lu _v.2, WIU.t, II _IL _ III_,OU.L_I._ J.,L _Z_ _J. _aL .L,L_,_,A_

by the autocollimatorsand'_fe knov_-ffin the body frame because they define the
body frame

• The local environment vectors g and wE ("gravity"* and earth rate), which can
be determined in the body fram6"by th6-accelerometers and gyros and which are
known in the earth frame because they explicitly define the earth frame; that is,

E 1 = U

E 2 = (WxU)/IWXU

E 3 : I

I where U : gJlg_J
and W = _wE/ _E I

!

i

The T matrix can be expressed in terms of the components of any two of the four above-

mentioned vectors (M1, M2, g, and __); but, as a contract requirement, only the

following three combinations are of interest in this study:

*See Section 3.1.1 for a definition of "gravity".

I
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• M 1 and M 2

• M 1 and _g

• _g and ¢_E.

The names of the techniques which implement the use of the components of these three

vector combinations are, respectively:

• Mirror Alignment

• Level Alignment

• Gyrocompass o

In the next subsection we will present the geometry of the four vectors (M1, M2, g,
and _E ), and in the following subsections we will present the explicit mathematical

relationships between the components of those vectors and the elements of the T matrix.

2.3.2 Alignment Geometry

In the preceding subsection we described alignment in terms of the determination of the

components of two vectors in both the body- and earth-fixed frames. We chose, as

alternatives, the vector combinations

• M 1 and M__2

• M 1 and g_

• g and _E.

In this subsection we present the geometric relationship between the four vectors which

are considered in our three techniques.

The required geometry is shown in Figure 2-7. The following comments explain the
notation:

U is a unit vector directed up; that is U = g / gl "

W is a unit vector directed along earth-rate; that is W = _E/I_E ].

_1 ands2 are, respectively, "azimuths" of the one and two mirror
normal, as determined by an autocollimator.

normal,-" _s-determ'_e d-by-_ cut o coil_at or: .......................
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Figure 2-7.

U

P

Earth and Mirror Axes
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is the angle between U and W, which we will refer to as "local latitude".

_Pis a unit vector directed along the projection of the one mirror normal
into the local horizontal plane.

2.3.3 The Three Functional Forms of the Alignment Matrix

In this subsection we present the explicit mathematical relationships between the elements

of the T matrix and the measurable body or earth referenced components of

M 1 and M2 for Mirror Alignment

M 1 and g for Level Alignment

g and _oE for Gyrocompass

These functional relationships are presented on the three _tccompanying charts. We will

not, in this subsection, meticulously derive the relationships; but will instead present

sufficient information such that the derivations _tre obvious. Let us consider each chart

i.n tu_rn o

Mirror Alignment

This derivation is quite easily explained. In Section 2.2.1 we defined the body-axes as:

BI = M I

B2 =

(M1 x M2) x _1

IM1xM21

(M_:x M2)
B3:

Therefore any vector, say U, can be written in body coordinates as

U_" (MlXM 2)xM 1 U" (M IXM 2)
C = (V. M1) B1 + B2 +
- I _:xM_.I I M_:_M_.I

B_3

and, after substituting the identity

U = ExN into the last component
m
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I
I

I
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MIRROR ALIGNMENT MATRIX

Inputs el, _1' 02 and a 2

From these quantities the alignment matrix is given by:

T

(_MI x U)•(M 1 x M 2)

(E_'M 1)
[M 1 xM21

(M 1 x N_)'(M I x _i_)

(N-• -M1) IM 1 x M2 1

CE x N).(M_I x M_2 )

!M_Ix M_21

(Nx U).(M1x M_2)

IM 1 x M21

(U x E)'CM 1 x M2)

IM_lXM2[

where
_ l/q,

IM Y M_, = :1 t'M M__ _'_
":1"" "'--'2' '"-'1 "'-2V

(M_I_I• M_2) = (M_I.U)(M 2.U) + (M 1. E)(_M2.E_)+ (M_I.N)(M 2.N)

"(U. M 1 b-

(E_'M_I)

(N'M 1)

cos O1

= cos a I sin01

sina 1 sinO 1

-(_.M_2)

(E'M 2)

(N_'M_2)

cos 02

= cos _2 sin 0 2

sin c_2 sin _2

An optional technique might utilize the value of I_M1 x _M21 from a previous alignment

thus eliminating the aforementioned dot product and square root operations•

I 2-27



D
and interchanging the dot and cross in the second component, we have

1 .%

The three bracketed quantities are the elements of the first row of the T matrix. In the

Mirror Alignment chart we see those elements in the first row, and similar elements for

E and N in the second and third row. The relationships between those elements and the

azimuth and zeniths as determined by optical equipment are listed below the matrix. The

azimuth and zenith relationships are obvious from Figure 2-7.

Leve 1 Alignment

This derivation is quite simple if one sel_rates the problem into three parts by defining

matrices (T1, T2, and T 3 say), where the three matrices are defined by

i ]E 2 =

.__P_u_ --

t_ j

M_xU
B_2

3 _

ObviouslyT = T 1 T 2 T 3.

The three matrices shown in the Level Alignment chart are T 1, T2, and T 3 respectively.

The derivation of the T 1 matrix is obvious from the definition of P in Figure 2-7. The

derivation of T 2 is based upon the fact that

Px u= (M,x u_,/I M, xU
--" --' I --1 --

and P=UX<Mlx_)/[_lx_
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LEVEL ALIGNMENT MATRIX

Inputs (g. B1) , (go B_2), (g" B3) and _1

From these quantities the alignment matrix is given by:

]
I

Wl
I

I
!

J

1 0 0

0 sin al cos a

0 -cosal sinal

I 0 1 0
1

Lo o1 (M_1"U) - -

MlxUI IMlxU_I

1 0 0

(U_.B_I) (U_. B2 ) (U.B3)

0 -(V.S3)(U.B2 )

whet e

@

(M 1"U) = (U. B1)

IMIXUI= L1 - (M1oU211/2

(_._) = (g._)/g

g = [(g. _B1)2+ (g.B2)2 + (g. B3)2_1/2

An optional technique might utilize any of the following additional inputs:

(M_I.U) = cos 01

• The magnitude of gravity (g) might be supplied from a local survey. This piece
of information can be utilized to reduce the number of required accelerometers
to two.
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The derivation of T 3 is based upon the fact that

_i : B-i

V

D

glXU =

(U'B 1) 131+(U'_B 2) B 2+ (U.B 3) B_3

( MlXU. B_I) B 1 + (MlXU. B_2) B 2 + (M 1 xU. B 3) B 3

The third identity becomes, after substituting M 1 = B_I

MlXU = - (U'B 3) B 2+ (U'B2) B3

Below the matrix expression we see the obvious relationships between the elements of the

T 2 and T 3 matrices and the body components of _g(as determined by accelerometers).

Below those relationships, we see alternate methods that utilize the zenith cosines and

sines from an optical measurement; and g from a survey.

Gyrocompass

In this derivation we express the T matrix as a product of two matrices (T 4

where T 4 and T 5 are defined by:

F _..] F ] F w 7

_E2 =

and T 5 say)

w = _5 _2

x B 3

That separation is shown on the gyrocompass chart. The matrix T 4 is obtained from the

identities

_EI = U_

,Tr vv

E 2 _ _xU/_ Wxu

E 3 = V__x(WxU)/ wx E
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GYROCOMPASS MATRIX

Inputs (go_B1)'(g. B_2),(g. B_3),(__E._BI! ( _:.B_2)'and (_Eo _B3)

From these quantities the alignment matrix is given by:

T

m

0

= 0

1

IwxuI

0

(W'U)
IwxuI 0

0

1

IwxuI

(w.B_1) (w._} {w_._}

(u_.B_} (U' B_2) (U. _)

(W_ x U)'(B 2 x B3) (WxU).(B3xB1) (Wx U). (BlXB2)

where

• (Wou)

• Iwxvl

" tvv • 1_]

• (UoBk)

E

• g

= (W. B1)(U. B1) + (W. B2)(Uo B2) + (Wo B3)(U

= ,.1 - (W. U)2_.l/2

= t__ • __kJ/

= (g. B_k)/g

: _( EoB_I)2+ (u2_E. B2)2+ ( E.B_3)2-L1/2

= :(g. BI)2 + (g. B2)2 + (g. B3)2 I/2

• B_3)

An optional technique might utilize any ofthe following additional inputs:

• The local latitude (k) might be utilized to find (W" U) from

(W. U) = cos _,

• The magnitude of gravity (g) might be supplied from a local survey.

• The magnitude of earth rate (¢cE) might be supplied from a local survey.

A use of all additional inputs could reduce the number of necessary instruments to three

(either two accelerometers and one gyro, or one accelerometer and two gyros).
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The rows of the T 5 matrix are obviously made up of the components of W, U, and WxU.

Below the matrix expression is found the relationships between the elements of the T 4 and

T 5 matrices, and the accelerometer and gyro determined body-axes components of g

and w E. Below those relationships is found a discussion of alternate techniques utilizing

g, E and ),.
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SECTION 3

SYST_I DESCRIPTION

The calibration and alignment requirements for tke NASA/ERC strapdown inertial

sensing unit were presented in Section 2. The calibration requirements were defined

as the determination of the inertial instrument model constants and the elements of

the matrices which transform between the instrument and body frames of reference.

Alignment was defined as the real-time initialization of the body-to-earth transformation

matrix. The alignment requirements were deliI_ed as the measurement of the body

and/or earth-frame components of two system vectors. Three alternative choices of

sets of vectors were introduced. These alternativ¢_ characterized the three alignment

techniques: Mirror A]ignment, Level Alignment, and Gyrocompass. As a necessary

aid to the satisfaction of the calibration and alignment requirements, various pieces of

laboratory equipment are needed. It is also necessary to understand fully the nature of

...... hn,_,.a_Ic en,_ru,,,._,,t -, w.._,_ u.v _u_IJm_i_ a_x_ x_u"a_'e iocated, in this section

our purpose is to describe that equipment and environment, beginning with their relation-

ships with the problems of calibration and alignment.

3.1 FUNCTIONAL DESCRIPTIONS OF CALIBRATION AND ALIGNMENT

The following paragraphs de scribe the functional activities of calibration and alignment.

(Section 3.1.1 discusses calibration, and 3.1.2 discusses alignment.) These functional

descriptions serve as a definition of the required inputs to the calibration and alignment

evaluations which come from sources other than the ISU.

3. i.1 Calibration

In the following discussion we indicate the functional requirements for determining the

calibration numbers. Our discussion will be quite general, the major purpose being to

introduce the reason why the equipment described in subsequent subsections is required.

As an aid to our presentation, we find it useful to compare the ERC laboratory calibration

with an '_deal Calibration". This comparison serves to indicate the compromises which

are necessary in defining an operational calibration laboratory.

On the followingchart (entitledCalibration)we present two calibrationfunctionaldiagrams.

We refer to the two techniques represented by those diagrams as IdealCalibrationand ERC

3-I

i



I

CHART 3-1

CALIBRATIONI

I

i
!
i

!

Ii

I
!

!

l

I
I

I

I

IDEAL CALIBRATION (OR STANDARDIZATION}

Real-time
environ-

ment inputs
into both

the ISU

and the

standard

t',, ISU
v

INSTRUMENT
OUTPUTS

V

Mapping

I acceleration and

angular rate

ISU outputs as a
function of standard

outputs over £he

entire expected

operational range
of the ISU

ERC LABORATORY CALIBRATIO.N

Assumed

I Math Models
V

Real-Time

Inputs

Measurement

Devices Used

In Real Time

Non Real-Time i "Z
In-uts ]Measurement

._ Devices Used

- Iin Non-Real
] Time

v

INSTRUMENT

OUTPUTS

Computation
of

Constants

Integral of the
Resolver Rate

.!

•_1 Store
r]

I

v

Instrument Constants

and Q Matrices

Average g, E and

deviations from those

averages as measured

I sometime prior tothe real-time
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Laboratory Calibration. The Ideal Calibration diagram represents the manner in which

caKbration would be accomplished if an unlimited amount of time and money were avail-

able. The ERC Laboratory Calibration diagram represents the manner in which the

calibration will be accomplished under more realistic constraints.

If one wished to calibrate a "black-box" (ISU) ideally, he would operate in the manner

indicated in the Ideal Calibration functional diagram. Subsequent to the development

of an ISU, whose outputs are designed to vary over a range of kinematic environment

inputs (a and __), one would wish to determine the quantitative relationship between the

ISU outputs and that environment. However, that environment exists only conceptually,

and not quantitatively, until a device is available which is defined as the measurer of these

kinematic quantities. That device is referred to as the "Standard" measuring device.

With the Standard available, it is then possible to calibrate the ISU by placing both the

ISU and the Standard in the same environment and mapping the output of both over the

range of the kinematic quantities which are considered to be significant. This mapping

would take the form of a table of ISU and Standard outputs over the required operational

range of the ISU. The mapping would necessarily be accomplished in a frame which

,_'h_r'_f_'s',_,7_ _-h e T_TT ,_t4 4_ I_T,_ _1,_4-;.,_ _-_ _-T,_ _-_A_.A T_ _-L:_ _ .......

will be the body axes as defined by the ISU mirror normals.

We see from the aforementioned statements that calibration is nothing more than the

implementing of the requirement that the ISU behave as the Standard would under the

same kinematic conditions. Thus, after calibration the ISU will have been "standardized".

Subsequent to the standardization, it is assumed that the ISU can measure the kinematic

environment, as the Standard would under the same conditions. This is accomplished by

a transformation of the ISU outputs into a measure of the environment by use of the mapping
information.

This is all rather interesting but not, operationally, very feasible. First, such a Standard

is not available in the laboratory, and even if it were, time would not allow for a mapping

over the entire operational range of the kinematic inputs. Secondly, in the case of applied

acceleration, the typical operational range of the kinematic inputs cannot be easily

generated in the laboratory. (A centrifuge would be required for accelerations higher

than one g.) Thirdly, it is not always feasible to have even a substitute for the Standard

operating at the same time as the ISU. All of these problems explain the deviations of

the ERC Laboratory Calibration from the Ideal Calibration. Before elaborating those

differences, a description of the ERC environment is necessary.
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The kinematic inputs found in the ERC laboratory include:

1)

2)

3)

The applied accelerations and angular velocities characteristic of any point
on the earth's surface

The local deviations from those accelerations and angular velocities due to such
things as earthquakes and cultural noise

The generated environments, caused by the ERC test table.

The first category includes earth-rate and the applied acceleration (normal- specific

force) which negates the acceleration due to gravity in a "static" orientation relative

to the earth. (This acceleration is often confused with gravity. It is, on the average,

equal in magnitude and opposite in sign to gravity. The very common convention is to

refer to this applied acceleration as g. We will, in the remainder of this document, also

refer to it as _g. Note, however, that we always direct g_g_away from the surface of the

earth.) The second category will be referred to as "noise". The laboratory test table

(see Figure 3-1), mentioned in the third category, has a motor-driven capability of

rotating at speeds up to several thousand earth rates. Such rotations will develop angular

attached, during calibration, to the table).

As suggested in the discussion of the Ideal Calibration, it is necessary that an independent

measure (Standard Output) of the laboratory environment be available in order that

calibration can be accomplished. This independent measure, even when a substitute for

the Standard is used, should be accomplished at the same time that the ISU is yielding

outputs. In the case of the angular velocity of the test table, an independent, real-time

measure will be accomplished through the use of the output of the test table resolver.

The measurements of the g_ and WE vectors are, however, accomplished at some time

prior to calibration and "stored" for use during calibration. The storage of the direction

of those two vectors is evidenced in the location of such things as optical lines, resolver

zeros, etc., and the magnitudes by storage of numbers in a computer memory. Informa-

tion about the noise is stored in the form of graphs showing characteristics such as

power spectral densities. Because g, w E, and noise are not measured in real time, it

is assumed that their behavior is the same at the time of calibration as it was at the

time of measurement; therefore, they can be considered a good approximation of a real-

time measurement.

To this point we have described the manner in which the Standard output is evidenced in

the ERC laboratory. We require only one more statement, in this presentation of the

calibration functional activity, about the substitution of ERC Laboratory Calibration for

3-4
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Ideal Calibration. The Ideal Calibration was described as a standardization over the

entire range of inputs. Fortunately, in the case of Laboratory Calibration, some of the

standardization has been accomplished by instrument designers prior to the placement

of the accelerometers and gyros in the ISU. A great deal of time and effort has already

been devoted to the development of a functional relationship between the output of the

instruments and their environment inputs. Those functional relationships are referred

to as mathematical models. As seen earlier, the instrument models contain many con-

stants. Because of the availability of the models, it is only necessary in calibration to

map a number of environments equal to the number of calibration constants for the de-

termination of those constants. It is assumed that a knowledge of the models, and the

model constants, serves to interpolate the mapping between the chosen environments.

In this subsection we discussed the independent measurements required as an aid to

calibration. In Section 3.2 we will discuss how those measurements are specifically

developed as inputs into the determination of the calibration constants.

3.1.2 Alignment

In Section 2.1 alignment was defined as the initialization of the matrix which transforms

from an ISU-fixed set of axes to a navigation set of axes. In Section 2.2 the ISU-fixed

axes were defined by two ISU-fixed mirror normals, and in Section 2.3 the navigation

axes were defined as an earth-fixed, local-level frame of reference. Further, in

Section 2.3, three alternate mathematical forms of the alignment matrix (T) were derived.

Each form showed a requirement for a different set of optical or inertial-instrument

measurements as an input into the quantitative determination of the alignment matrix.

In this section we will discuss the techniques for determining each set of inputs.

As an aid to this disucssion we present in the accompanying chart, entitled "Alignment

Functional Diagrams", a schematic of each of the three alignment techniques. In the

remaining paragraphs of this section we discuss, in turn, the contents of each functional

diagram.

Mirror Alignment

The routine labeled Alignment Matrix Computations represents the computations described

in the Mirror Alignment Chart found in Section 2.3.3. As shown in Section 2.3.3 those

computations require, as inputs, the optically determined azimuth and zenith of both the

one and two mirror nnrmal._. (In pracfie% thp _cf,ml nnfie_l m_n_,,vomanf¢ m_crhf ha

angles other than the azimuth and/or zenith angle. Itis always an easy matter, however,

to convert the actual measurements into the required azimuth and zenith. ) The optical
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measurements will be manually transferred to the matrix computation routine, which will be

part of a digital computer program in the ERC facility. Because optical measurements are

extremely accurate by design, we do not include in the functional diagram any data-filtering

funct ion.

Level Alignment

The second functional diagram represents the Level Alignment procedure. The Alignment

Matrix Computations indicated in the last block in the diagram represent the computations

found in the Level Alignment chart described in Section 2.3.3. That routine requires, as

inputs, the body-axes components of g and the azimuth of the one mirror. In Section 2.3 it

was mentioned that the body-axes components of g will be available as the result of acceler-

ometer measurements and the azimuth of the one mirror as an optical measurement. At the

left side of the diagram we see the input of these measurements. The optically obtained

azimuth goes directly to the matrix routine (as it did in Mirror Alignment). The accelerom-

eter inputs, however, will require further processing, since they will be in the form of

three digital pulse counts.

We saw. in Section 2.2.5. that the Preprocessing Computations convert such countg into

integrals of body-axes components of the applied acceleration inputs to the accelerometers.

However, those computations assumed no quantization and instrument noise. Therefore,

the transformation of the outputs of the Preprocessing Computations into the desired

body-axes components of g would require four additional operations in order to accomplish

a good estimation of g. B k . These are:

• A compensation for instrument quantization

• A compensation for instrument noise

• Separation of _gfrom random environmental accelerations.

If the_. ISU were to be in a stationary orientation ,"_ln÷i"n,_aL_,_ 1-n_v _g -_,,_,,g_"-'-_a,,,,,_,,t"'_"_^- _+_+ ,_,__,_ if the

aecelerometer input were a constant _g acceleration), the first operation would be simply a

division of the Preprocessing output by the total time of integration (say At). Additionally,

the compensation for instrument quantization could then be accomplished by simply waiting

sufficiently long such that the quantization residual would be arbitrarily small. However,

the ISU at the ERC facility will not be in a constant g environment. Due to such things as

local vehicle motion, personnel movement, etc., the ISU will be, in fact, in the presence of

the nominal local _gplus "noisy" vibrations. If some a priori knowledge of that noisy envi-

ronment is available, it is possible to accomplish some of the aforementioned compensations

Those mathematical operations are presented in Chart 3-2 as the Estimation Matrix Com-

putations and Estimation Routine. The former involves the computation of constants prior

to the actual alignment. The input to those computations is the a priori noise information.
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The Estimation Routine represents the on-line operations on the Preprocessing outputs. The

outputs of the Estimation Routine are the required estimates of the body-axes components of _g.

The Preprocessing routine has been completely definea in Section 2.2.5, and the Alignment

Matrix Computations have been aefined in Section 2.3.3; hence, the aevelopment of the

alignment techniques presented in Section 5 of this report will be preoccupied with the

Estimation Matrix Computations and the Estimation Routine. In Section 3.2.2 we will

present a discussion of the a priori noise information which is required as inputs to the

esthnation routines described in Section 5.

Gyrocompass

The third functional diagram in Chart 3-2 represents the operational gyrocompass pro-

cedures. The Alignment Matrix Computations shown in the diagram were presented in

Section 2.3.3. Required inputs are the body-axes components of g and _E. At the

left-hand side of the diagram we see the inputs of accelerometer and gyro readouts

required for the determination of the body-axes components of _g and _E. In the preceding

section there is a discussion relating to the transformation of the accelerometer outputs

i--n-to -_.1! o_firn_fP nf fho hnrty-nYo_ enmpnnonf_ nf g. Thi_ di_eN_inn _l_n _nnlls_ fn (_.wPn_

compass with the following modifications:

In Gyrocompass the Preprocessing computations as presented in Section 2.2.5
will be used entirely, whereas the Level Alignment uses only the accelerometer-
related computations.

The estimation routines will operate on both gyro and accelerometer data.

3.2 ENVIRONMENT MODEL

In the preceding discussions we showed that independent environment measurements are

required for calibration, and a priori noise Ln_forn_ation is required for alignment.

We indicated the manner in which that information is available at the ERC facility. In this

section we will show specifically how the required measurement information is made

quantitatively available to the calibration and alignment con_putational routines.

The reference environment information takes on different forms, and therefore can be

discussed independently. First, there are the stored g and __E vectors which must be

expressed in terms of body-axes components for calibration purposes. There is the _T

vector (angular velocity of the test table), which must also be expressed in body-axes

components. We will refer to these three vectors as the determir, istic environment, We

will show in Section 3.2.1 how the body-axes components of the deterministic environment

are obtained as a function of test table gimbal angles. The remaining environment inputs

have been referred to as random noise. They will be described in Section 3.2.2.

3-9



I

I
i

I

I

I
ii

t

I|

3.2.1 Deterministic Environment

The deterministic environment is made up of the three vectors g, x E and xT which

are assumed known in frames well surveyed in the laboratory. Our purpose in this

section is to show how those vectors are transformed from the laboratory frames into

ISU body-axes components. The transformation will be accomplished through the use of

quantitative measurements taken from both the laboratory test table and the system

autocollimators. We begin our discussion (in 3.2.1.1) by describing the geometry of those

pieces of equipment. We then define the transformations between the many rigid bodies

making up the equipment. Finally, (in Section 3.2.1.3) we will develop the operational

transformation of the deterministic environment into body-axes components.

3.2.1.1 Laboratory Geometry

The geometry of the test table and autocollimators is the geometry which enables us to

transform g, _cE, and _T into body-axes components in the ERC laboratory. In

Figure 3-2 we present a schematic of this geometry. This figure is a repeat of Figure 3-1,

with the addition of the defined laboratory frames. Chart 3-3 presents the definitions of

the frames _-_+_.__ _- _ ..... 3 9 A _.......... .+................... _ _ _h^

understanding of Figure 3-2 and the chart containing the definitions of the frames.

All frames are defined by orthogonal unit vectors directed along the frame axes.

The _ frame is not explicitly defined in Figure 3-2. The explicit definition
will depend upon the (at this time) unknown geometry of the autocollimators.
(The lack of an explicit definition has, however, proved to be no burden in the
work that follows.)

The body axes are not shown in Figure 3-2, because their relative orientation
depends upon the manner in which the ISU is attached to the inner-axis rigid
body.

The _Fk frame will be required to line up with the _Ek frame. This alignment
will naturally be with the laboratory frame, which, in turn, is thought to be
coincident with the earth axes defined by g "and wE We will see in Section 4.4.4
that this alignment will have to be corrected pe_odically by the use of bubble
levels.

Each adjacent pair of test table frames is assumed to have a common axis.

The four test table rotation angles are defined as _1, ¢2, c3' and :4' as
shown in Figure 3-2.

The test table orientation shown in Figure 3-2 is the zero orientation - that is,
the orientation when all resolvers yield a zero output.

Th_ T_TT will h_ _ff_r,h_t fn fh_ _r,tinn l_h_l_l "fp_t _nhi_,_t" fhrnna'hnnf fh_

entire calibration,
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DEFINITION OF FRAMES

LABORATORY FIXED FRAMES

• E_I E_2 E__3

• S 1 S 2 S 3

• F 1 F_2 F_3

A triad of unit vectors directed up, east, and

north, respectively

A triad of unit vectors defined by the two optica

lines of the autocollimators

A triad of unit vectors fixed to the base of the

test table

TEST TABLE FRAMES

• F 1 F 2 F 3

• T 1 T 2 T 3

• Rt R. R_
--J- --_ --O

• 01 0_2 0 3

• _11_2_

ISU FIXED FRAMES

• ll_2_

• B 1 B 2 B_3

A triad of unit vectors fixed to the base of the

test table

A triad of unit vectors fixed to the body con-

taining the trunnion axis

A triad of unit vectors fixed to the body. con-

taining the rotary axis

A triad of unit vectors fixed to the body con-

taining the outer axis

A triad of unit vectors fixed to the body con-

taining the inner axis

A triad of unit vectors fixed to the body con-

taining the inner axis

A triad of unit vectors defining the body axes

as defined by the mirror normals (see

Section 2.2. 1)

I 3-12
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3,2. I. 2 Definition of Transformations

Let us choose the T k and R k frames for our example. The relationship between the unit

vectors of the two frames is given by:

R2 : TRT
E3 _3

where a multiplication of the k th row of the 3x3 matrix T RT with the T_, column represents

_Rk expressed in the T, frame. If x is any vector known in the T_, frame and one wishes

to express that vector in the _Rk frame, we dot the above definition with x, yielding:

(x. R_)/ (x- T_)/

If, further, we wish to transform to the F k frame, we have:

I (x'F1)__ IT R11 T1 I{x'T1)I(x F2)| = F T R (x. T2)

(x. F,)I Ix. T,)
L- --oj L .J L 1 L- -o /

T FT (x. w2)|
(:. T,,)/

L J L'- -oj

and so forth.

3.2.1.3 Operational Transformations

With the geometry information now completely described, it is possible to show how

g, _cE, and _T are transformed into body-axes components. The accompanying chart

shows how that transformation is accomplishea. Note that the chart specifies that the

test table gimbal angles will always be used in determining the transformation, instead

of autocollirnator surveys. This is purely a matter of convenience. It certainly would

be cumbersome to survey via the autocollimators over the 4u steradians in which the

mirror normals can be located. Besides, the test table was designed to accomplish

the necessary transformations. Note that the autocollimators are absolutely essential
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Transformations of m E T_ , g and _ into

Body Axes Components

During calibration there is a requirement for the transformation of __E, g and T into

!body axes components. Gravity and earth rate are vectors explicitly known in the E k
T

frame and _ is a vector explicitly measured in the R_k frame. The body axes com-

ponents of these vectors can, therefore, be written:

BE E E_(_cLE. B_k) = [ T kt '-_

= T BE EL(g"-Bk) _ k% g°

BR T. R_(_cW.Bk) = L_ Tk& _ -

The matrices T BE and T BR are, therefore, required. These matrices, as a matter of

convenience, will always be found as a function of test table gimbal angles. Therefore:

mBR mBI _IO _OR
1 = I I i

and T BE = T BI T IO T OR T RT T TF T FE

The matrix T BI is a constant which must be found from an initial survey (see Section

4.4.1). The remaining matrices can be seen from the previous definitions to be:

V ] :: :]= _T OR oIT IO CC 4 0 -S¢ 4 = 0 -S¢ 3

Ls_ 0 ¢_d i s_ 0 ¢_d
0 1 0 1 0

_TRT] = ¢2 0 -S¢ IT TF] C¢ 1 0 -S¢ 1

kS¢2 0 -C¢2J kS¢l 0 -C¢1_ j

j= 1 0

0 1

(Note, the frames are defined so that each matrix has the same form. )
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The laboratory test environment introduces a random translational and rotational "noise"

input. In describing the noise inputs, we will utilizethe worst-case model° Namely, the

translational input and angular input are assumed to be independent, and the components

of the random input vectors are assumed to be independent.

The random translational inputs about the up-down, east-west, and north-south axes

have been assumed to be statistically independent and identically distributed. Each input

has a power spectrum illustrated in Figure 3-3.* It follows that the translational motions

along any three perpendicular axes are uncorrelated and have the spectrum given in

Figure 3-3. The nominal input (local gravity) is assumed to be the long-term average

input. Assuming ergodicity of the expectation, the translational inputs have zero expec-

tations. The random translational inputs do not produce a significant output from the

gyros.

The random rotational input produces a rotation about an axis in the horizontal plane.

The rotation about the vertical axis can be neglected. The random angular inputs about

• ' Llle llOl LII- bUtiLll 41me east-west axis ai-td ..................................... a_io " .... _a.... .a__. ,z_tu--'a_,_.,,^_^k has

the power spectrum illustrated in Figure 3-4. These inputs are assumed to have zero

expectation s.

The spectra given in Figures 3-3 and 3-4 are the basis of numerical computations involving

environment noise. The selection of the 'Recommended Alignment Techniques" in

Section 5.7 assumed an environment as indicated in Figures 3-3 and 3-4. The alignment

processing techniques derived in Sections 5.4 and 5.5 use the power spectra of the

translational and rotational noise inputs but do not depend on the specific numbers given

in Figures 3-3 and 3-4.

3.3 HARDWARE DESCRIPTION AND INTERFACE

The material presented to this point has been introductory in nature. That is, all dis-

cussions were either related to the detailed statement of the calibration and alignment

problem, the definition of terms, the description of necessary equipment, or the descrip-

tion of the laboratory environment. In this section we will complete the presentation of

introductory material by covering two descriptive tasks which aid in the understanding

of the calibration and alignment development in Sections 4 and 5 and the operational

* Rnoot,'a data i_ _rivon by H- Wainstnek in "Limitations on Inertial Sensor Testinz
_Jr o ....... .J ........

Produced by Test Platform Vibration", NASA Electronics Research Center,
Cambridge, NASA TN D-3683, 1966.
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procedures presented hi tile Laboratory Procedures Manual. First, there is laboratory

equipment which is necessary for the i,_lplementation of calibration and alignment pro-

cedures and which has not yet been described. Second, the laboratory equipment has not

been presented as a system as a whole, with all of its interconnections. In this section

the description of that equipment and interface will be accomplished through the use of

a system diagram. In Section 3.3.1 that diagram is introduced but without the lines

denoting the equipment interface. In conjunction with the introduction of that diagram,

we will present brief descriptions of the equipment which each block in the diagram

represents. In Section 3.3.2 the useful interfaces between all equipment will be presented

in tabular form.

3.3.1 System Diagram and Equipment Description

The master system flow diagram is shown in Figure 3-5. This diagram will be used as

an aid in the Laboratory Procedures Manual to describe the system activities during

various phases of calibration and alignment. In those applications of the diagram, interface

lines will be added to indicate specific modes of operation. Data flows are indicated by

nari-ow _-le_, uyl_miu ui mul_itur ,,_L_rl_ce_ _e -mic_teu by wide iine_. A brief descrip-

tion of each of the boxes represented on the master system diagram, in Figure 3-5, follows:

Input/Output Console - The input/output console consists of the equipment that provides

a manual computer interface. Included in the input/output console are: computer control

panel, keyboard and typewriter, paper tape reader and punch, and the display panel.

Operator - The operator in this system must perform many of the tasks of control and

data transfer. The box "operator" includes not only the person(s) directing the laboratory,

but also his worksheets, instructions, and notes.

Systems Control and Monitor - This box represents the equipment, capability, and

activity used to monitor and control the system during calibration and alignment.

Frequency Counters - Six frequency counters are available for use in calibration to

measure instrument output. These counters measure the number of counts on one pulse

train for a fixed number of counts on another. One of the two trains may be a difference

train formed from two inputs. The frequency counters are used in calibration, because

they can read the leading edge of one pulse train and thus substantially reduce the

quantization error relative to the use of the computer registers.

Auxliary Data Sources - These include data sources available to the operator but not

sufficiently well defined as equipment or measuring devices to be represented individually

3-18
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on the system flow diagram. Examples of these sources are bubble levels and survey

information on the magnitude of g and _cE.

Autocollimators - The two-degree-of-freedom autocollimators are available to measure

the earth-fixed coordinates of the ISU mirror normals.

Resolvers - These resolvers measure the orientation of the test table. The angles ¢1'

_3' and ¢4 are static resolver readouts on the trunnion, outer and inner axes of the

test table. The angle ¢2 is a rotary axis readout which can be used in either a static

or dynamic mode.

Master Oscillator - This is the central tining source of the system. The master oscillator

includes countdown circuitry.

Gyros, Accelerometers - These are the instruments contained within the strapdown ISU

(see Section 2.2).

inertial instruments and timer. The IEU contains accumulatlng reglsters for each of Lhe

inputs shown in the diagram and the capability to periodically interrupt the computer to

allow for sampling and resetting (without loss of data) of each of the registers.

Computer* - The computer schematically indicated in the system diagram is the laboratory

computer Honeywell DDP-124. Other portions of the data processing shown may, however,

be performed on other computers at the discretion of the programmers and operators.

Blocks shown within the computer represent functions used in both calibration and align-

mento Shown are programs to input and output data from and to the console, a program

to input data from the IEU, and memory buffers for input data and output data (the results

of computations). Space has been left within the computer block to allow representation

of the various data processing tasks.

3.3.2 Equipment Interface

Figure 3-6 illustrates the principle data paths that might be of interest during calibration

and alignment. Each of the paths is numbered and described by number in Chart 3-5.

These paths represent the calibration or alignment data flow.

* More detailed descriptions are presented in Appendix C.
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Description of Equipment Data Paths

Data

Interface # Type Data Description

1 CodedI

I

I
I

I
i

• ii

I
I

I
I

I

I
I

i0

Ii

12

13

14

15

16

Visual or tape

Visual

Visual

Pulsed

Timing

Timing

Timing

0, +1 or -1 pulses
at 3.6 KHz

Pulsed

Count

Count

Count

Count

Visual

Manual

Input - Includes magnetic and paper tape, keyboard,
and display and computer control panel inputs. Data
represents information and control from or through
the computer plus data or program filed on magnetic
or paper tape.

Output - Display, typewriter, or paper tape panel
output to the operator.

Various types of data

Two angles/autocollimator

Four angles test table position

Rotary axis motion probably one pulse

Frequency less than 1 MHz

2.034 MHz

3.6 KHz

Gyro output to frequency counters and IEU

Zero crossing pulses from each of two vibrating
strings per accelerometer to frequency counters
nnd IEU

For inputs shown - count would be number of time
pulses per n turns

For input shown - count would be number of gyro
pulses (signed) for n turns of table

For inputs shown - count would be number of time
pulses per Inl gyro pulses

For inputs shown - count would be numbers of time
pulses per N accelerometer pulses

Status and monitor information plus output from
the counters

Low visual display and printed

Manual input of data to computer (includes key
punching, mounting of tapes and punching of
buttons)

I
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I Description of Equipment Data Paths (Continued)

CHART 3-5
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Data
Interface #

17

18

19

20

Type

Binary Data

Binary Data

Binary Data

Binary Data

Data Description

Counts from IEU registers. Input in succession
with data valid for same period of time.

Counts from IEU registers. May be summations
of data from several successive transfer across
interface #17

Input data shown in buffer

Output data shown in buffer

I

I

I
I

I

I
I

I

I
I
I
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Manual and monitor interfaces are shown in Figure 3-7. The manual interfaces correspond

to operator activities during various portions of the calibration and alignment procedure.

Monitor is performed during the many procedures to verify the operation of equipment being

used at that time. Explanations for each interface on Figure 3-7 are presented on the

figure.
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I/0 Console

System Control
and Monitor

L

Keypunch data into computer

Align Autocollimators with
Mirrors on ISU.

Set table resolvers to Com-
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Figure 3-7. Laboratory Flow Diagram Manual
and Monitor Interfaces
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SECTION 4

DEVELOPMENT OF CALl BRATION TECHN IQUES

The functional description of calibration in Chart 3-1 in Section 3.1.1 indicated inputs of

instrument data and environment measurements to a computation routine, which in turn

outputs the calibration constants. The obvious sources of the relationships contained

within that routine are the instrument mathematical models. In Section 4.1 we will use

the _,,_rumc,,t ,,,v_,,,_o_'_'_'_l_to ,_,,_....v_v_ gener_1,, _, _quat .... s from _.vh_rh................ the r_l_t_ons fo__md in the

computation routine are evolved. The general equations will be seen to contain certain

controllable parameters which describe the input environment in terms of the test table

controllable orientation and angular speed. In Section 4.2 a number of sets of particular

values for the control parameters will be chosen such that the general equations reduce

considerably in form. Each set of particular values corresponds to a different calibra-

tion '_Position". It will be shown that the determination of any constant can be accom-

plished by the simultaneous solution of at most two of the reduced equations. In

Section 4.3 the complete set of calibration computations will be delineated. The relations

employed in the computation routine correspond to the solution of the calibration con-

stants from the data gathered in Positions 1 through 15.

In Section 4.4 we will describe the operations and computations required prior to the

collection of calibration data. An example of a precalibration operation is the determina-

tion of the orientation of the ISU body axes relative to the test table inner-gimbal frame

(i. e., TBI). In Section 4.5 a brief discussion of the implementation of the proposed

techniques will be presented. The discussion of the implementation of the calibration

techniques is directed towards clarifying the relation between the developments in this

document and the operational procedures described in the Laboratory Procedures Manual.

Before proceeding to the development of the calibration techniques, it is appropriate to

describe those incentives which motivated our specific choices of calibration techniques:

The determination of any calibration constant should be made as insensitive as
possible to the imprecision of any other constant(s).

It is advisable to use as few different test table orientations as possible; and
where the orientations are different, to try to make the orientations differ from
one another by as little adjustment of the table as possible. The satisfaction of
this requirement serves two purposes. First, it will allow for the simultaneous
calibration of many instruments. Secondly, by limiting the number of table
,_.-{an+_+innc 'l'h,c,_mounf n_" m.n,ml antivitv will be limited, thus minimizing

calibration time, and also the chances of human error.
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The imprecisions of the test table orientations should have a limited irLfluence on
the values of the calibration constants.

The calibration should be made as flexible as possible. We wish to present the
calibration in such a way that additional experiments can be accomplished with a
minimum number of changes to existing calibration procedures.

We wish to accomplish our calibration with little or no data filtering. We would
like to minimize the effects of noise by judicious choices of approaches other
than involved software processing.

The computation program should be as simple as possible.

Data collection time should be limited to about 10 minutes, and the total calibra-
tion time to less than eight hours.

The precision of calibration, as a function of time, should be apparent from
error analyses accomplished on the resultant techniques.

In the discussions which follow, it will be found that it is possible to satisfy a majority of

the above requirements.

4.1 DEVELOPMENT OF GENERAL CALIBRATION EQUATIONS

Th_ _outine that accomplishes the evaluation of the calibration constants we indicated in

Chart 3-1 as a routine entitled "Computation of Constants". In this section we will develop

the general equations from which the computational routine is developed. Those general

equations will be seen to contain the control parameters which describe the environment

inputs. The chosen control parameters are the angular speed of the test table, the first
T:IT_

two gimbai angles (_I and c2) or the teat table_ and the 'F_** m_trix (which i._ _ lunar!on

of the _3 and ¢4 gimbal angles). In Section 4.2 we will show how particular choices of
these control parameters result in relations from which the calibration constants can be

extracted.

The presentation in this section is divided into two parts. In Section 4.1.1 we develop

the general equations for the three system gyros, and in Section 4.1.2 we develop the

general equations for the three accelerometers.

4.1.1 Gyro Equations

The development of the general equations begins with a presentation of the Fundamental

Gyro Model. After introducing the ERC environment and geometry into that model we

will have developed equations which are a function of, among other things, the angular

DI, J_:l_kl Ul Ull;_ test L_LUI_ al"Ld LI::DL b_k)l_ UII_ILI,_LLIUII LJal_Llll_t_l_* nil _l.LU_t:_lkL_::llt _LLL)_t:Y_.;LIUII_

we will show how the control of those test table parameters is employed in the determina-

tion of the required instrument calibration constants.
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The presentation in this subsection contains a great deal of mathematics. So as not to

interfere with the prose, we will present the mathematical development as a series of

eight charts. In each chart, after the first, the equations found on the preceding chart

will be modified to indicate certain assumptions about the environment. In the dis-

cussions which follow we describe, in turn, the assumptions and the related mathematics

presented on each chart.

The Fundamental Gyro Model (Chart 4-1)

Th_....development of the _,_----_'_'"'_I_'_'_----_-gyro calibration equations begins with eh__.__ro

mathematical model. That model was described in Section 2.2.3 and presented as

Chart 2-2. Chart 2-2 is repeated here as Chart 4-1. The gyro mathematical model

describes the relationship between the output C_ 5) of the gyro and the input kinematic

environment (a and o_)over a time period t04tN.

Introduction of Laboratory Environment (Chart 4-2)

We first introduce into the gyro mathematical model the vector representation of the ERC

laboratory kinematic environment. At the top of the chart the kinematic inputs are listed.

Note that every possible input has been listed. This is done so that, at one point in the

development, there exists an expression which assumes nothing about the negative effect

of any possible input. Note also that the environment description assumes thai the _yro

is subjected to an input angular velocity _T as generated by the test table rotary axis

motor.

Approximations (Chart 4-3)

The next step is to neglect those kinematic inputs to the gyro which can reasonably be

expected to have a negligible effect on the gyro output. A gyro is designed to be nominally

a linear angular velocity measuring device; therefore all acceleration-sensitive terms

are small. The noise acceleration and the test table-induced accelerations are also

small relative to the nominal g input. Therefore the effects of these small accelerations

are second order in all unbalance and compliance terms and are assumed negligible.

Similarly, it is assumed that the small angular velocity noise terms can be neglected in

all angular velocity-sensitive terms other than the linear term. Note that in Chart 4-3

we have arranged the equations such that only the deterministic g, ¢cE, and __T inputs

exist to the right of the equality. Note also that the equation has been divided by the

gyro scale factor.
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Introduction of Body Axes and Instrument Indexing (Chart 4-4)

The equations presented thus far have referred to a single gyro. At this point we intro-

duce the index i defining three gyros (i = 1, 2, 3).

We mentioned in Section 3.2 that for calibration purposes, the vectors g, ¢0E, and _T

must be known in body-axis components. In Chart 4-4 we introduce the body axes, and

express the integrals of these vectors in terms of body-axis components. Because the

nominally known instrument-to-body-axis transformations differ from the actual trans-

formations by _.11,_--_11numbers, it is assumed that the nominal values can be used in other

than the proportional angular velocity term. Note that the first three elements in the

equation represent the ith row of the (QG)-I matrix, scaled by the gyro scale factor.

Note also that these elements are assumed constants whereas, on a microscopic scale,

they are time-varying within the limit cycle amplitude of the instruments.

The function found to the left of the equality has, at this point in the development, been

defined as the triple pG(i = 1, 2, 3). This vector, which we will refer to as the gyro

processing vector, contains the instrument readout term plus the quantization and noise

terms. The P_ vector, and the approximations made in its evaluation during calibration,
will be discussed in Section 4.3.1.

Choice of Body Axes (Chart 4-5)

The next step in the development is to h_troduce the ERC ISU nominal geometry. Those

transformations which describe that geometry were defined in Section 2.2.1. Because

the orientations of the output and spin axes are not cyclic, a general index equation

cannot be developed. Therefore a separate equation for each gyro is presented in

Chart 4- 5.

At this point the general equations relate the gyro processing vector (which includes

measurable gyro readout, noise, and quantization error) to the measurable body-axis

components of the environment (described by g, w E, and T). In the remaining charts

we will relate the body-axis components of the environment to the controllable test

table parameters.

Integral Evaluations (Charts 4-6, 4-7, and 4-8)

The preceding chart listed the required equations as three expressions which are linear

in the unknown calibration constants. The coefficients of those unknown constants are

presented as integrals of body-axis components of g, _E, and__T. In the discussions of
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calibration techniques which follow this subsection we will show how calibration is

accomplished by a control of the values of these integrals. Before we can show this we

must functionally relate the integrals to the controllable test table geometry. The

following three charts develop those functions.

In the first chart (4-6) the integrals of the body-axis components of g, w E, and w T are

expressed as transformations from the frames in which they are well known. The

definitions of the transformation geometry and notation were explained in Section 3.2.1.

In Chart 4-7 *"^_,,__aru,-,_v_^*" ..... components of g and o:E a.u^-_the rotary" axes components u_-_

ceT are introduced. Additionally, the T TE and T RT matrices are expressed as functions

of the ¢1 and ¢2 gimbal angles. (See Section 3.2.1 for definitions of this geometry. )

With these equalities introduced, we can now extract all but the time-varying parameter

(¢2) from the integrands of the equations.

I

i
I
I

I

In the final chart (4-8) the integrals are combined as the calibration constant coefficients.

The equalities listed at the top of the chart allow the integrals to be separated into sums

of monotonically increasing terms, harmonic terms, and terms which are functions of

terminal conditions only. The only harmonic terms are those which contain integrals of

sines and cosines. The monotonic increasing terms are those containing At, and the

terminal condition terms are those which contain _'s other than At.

Charts 4-5 and 4-8 constitute the required general gyro calibration equations. Note that

our result is a set of three functional relationships among: the '_rocessing vector"

pG; the unknown calibration constants; the magnitudes of gravity (g), earth rate (wE),

and latitude (_); the total time of integration (4 t), and the controllable test table

parameters, which are

I ¢1 -
¢2 -

i

!

The trunnion axis angle

The total angle of revolution about the rotary axis

wT d¢2- The speed of the test table
dt

and T BRm - The matrix which transforms from the rotary axis frame to the
body axes for the m th calibration position.

(See Section 3 for definitions of all test table geometry, )

table parameters contained within the functional relationships.

i

I

I 4-5
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THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS:

A¢ k=E16k = (w.G) dt+ +BI(a.G ).... + Bo(a.O ) + Bs(a.S ) + CII(a.G)2 + Css(a.S)2

+ CIS(a.G)(a.S) + Cos(a-O ) (a.S) + CIO(a.G) (a'O)

d -7

+ QH(_'G_) 2 + QIS(_-G)(_.S) + J _ (__. O)]dt + an + Eq

WHERE

is the angular velocity applied to the gyro

_a is the acceleration applied to the gyro

t o _ t _ t N is the time interval over which a and _ are measured

t N - t o = N_', where N is an integer, andr is the gyro sampling
nprih¢_

S is a unit vector along the spin axis of the rotor

O_ is a unit vector directed along the output axis as defined by the

gimbal

G is a unit vector along 0 x S (that is, the sensitive axis of the gyro)

5k iS the k-th gyL-o pulse, _4udl [u *i, -i, u*" O [uL" pusiiive, negative,

or no pulse

A¢ is the gyro scale factor

R is the gyro bias

B I B O and B S are the gyro unbalance coefficients

CII CSS CIS COS and CIO are the gyro compliance coefficients

QIS and QII are dynamic coupling coefficients due to gimbal deflection

and scale factor nonlinearity, respectively

J is the angular rate coefficient

An is the effect of gyro noise over the [t0, tN] interval

Eq is the gyro quantization error

I
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INTRODUCTION OF LABORATORY ENVIRONMENT

ASSUME

_L = _L,TT + u EE = (_;T + A_.T) + ( E + 5¢cE) is the total applied angular

velocity

where: TT is the total test table angular velocity

_T is the measured test table angular velocity

EE.
is the total laboratory angular velocity

_E is the assumed (surveyed) laboratory angular velocity

a a L = g + _TT...... x (_cTT x r) + -_ TT x r + Aa is the total applied specific force

where: _g is the assumed (surveyed) laboratory specific force

TT ( TT_ x x r) is the centripetal specific force due to the table

motion

•, T'I'
,_ x r is the angular rate specific force due to the table motion

6.a is the deviation of the assumed laboratory specific force from

the true

• _TT x (TT x r) and _TT x r are formal expressions, as r is not explicitly

defined

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-1, WE HAVE

_t0

•tN'FR+ Bii(g+ _TTx(_TTxr)+ _,TTxr._a).G_l + BO I(_g+ _cTTx (¢_TTxr)÷ _TTxr+ Aa).O_l+% }L .......

+ BS [(_+__TTx(_TTxr)+ _TTxr+Aa)'SI+ CII [(g* _TTx(_TTxr)+ _rTxr+Aa)'G-I2_ .....

L

÷_n+ Eq

4-7
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APPROXIMATIONS

ASSUME

• Terms containing the integral of components of Aa always have negligible
effect on the gyro readout.

• Terms containing the integral of components of _TT_ x (#T x r) and

_ TT x r have a negligible effect on the gyro readout.

I TTx(TTxr) I<(0.22) 2x0.5 =0.024 ft./sec. 2 =0.008g.

• Terms containing QIS or QII and the integrals of components of A_cE_ or

aX_T have a negligible effect on the gyro readout.

Terms containing J and the integrals of the rate of change of A w E and

A _T have a negligible effect on the gyro readout.

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-2 WE HAVE

(AFTER SOME ARRANGEi¢,F.NTS):

(I/A_) An- (1/A_) Eq - (I/A¢) _ _E + A.oT). dt
_t
0

t N t N t N

= (1/Ae) j: [(_-E_ + ocT)._ G]dt_ + (R/A_) S. dt + (BI/A¢) j:
t_ t N tt%

v v v

t N tN t N

+ (Bo/ZX ¢) _t 0 (g. O) dt + Bs/A ¢) ct0_ (g. S) dt + (CII/A _) 3t0

(g'G) dt

(g. G)2dt

t N t N

(g-S) 2 dt + (CIs/Ae) jt0'" (g. G) (g. S)dt + (Cos/A ¢) tJ:0 (g. O)(g. S) dt

+ (CIo/A4s) tN T(g.G)(g.O)dt+ (QII/Z_) }tNrt_sE + oc ).G_2dt
Jt0 Jt0 _'- _

+ (QIs/A¢)j_:[( E wT).G]z(_E wT).s]dt+(J/A¢) etN d/dt [(_E+ ccT).o]dt+ _ __ _ + _ _ Jt0 - _ _

I 4-8
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INTRODUCTION OF BODY AXES AND INSTRUMENT INDEXING

ASSUME * B1 B2 B3 are a triad of orthogonal unit vectors which have a fixed

orientation relative to G i" O_iand S i where i is the instrument index equal
to 1, 2, or 3.

Therefore, G_i= k_ (G i-Bk)B k ; O i = k_(Oi.Bk)Bk ; _Si = kZ(Si._Bk)Bk

• (Gi.Bk) , (O_.B,.) and (S...B,_) differ from their nominal values (G..B_) n
-* -_ n -i -_ -I --K '

(Oi.Bk)nand (Si-_Bk) by small numbers. Those differencesare sufficiently

small as to only affect the gyro readout via the proportional angular velocity

term.

WITH THESE ASSUMPTIONS THE GYRO EOUATION BECOMES

(o_':s3) _¢ ¢i

^_t

BII A¢ {i

* II BS'_¢ I i

" ',CSS/_@ ',l

÷ j CI(:Y :'¢' i i

+ I COS/A_, ItI i

+ tt QI]IA¢ {i

I QISI_¢ l i+t

t JIAi Ii+t

(Gi.BI } A@i I .iN ( E.B.)dt * ;.tN( T. BI)d t (
- - i I "to - -i .t0 - -

(GfBl),Altli /N(_E.BI)dl + -IN (_T. 132)d i {

_ _ t0 - _to - _ $

.tN .t N

-to (*E.B3)dt . (i=T.B3)dt
_ _ -to - _

_tN _t l

u

G n ,.tN
(_:__I . (_._)d,

t o

O n tN

t O

t N

t

kr - - -t o )

rr (_Si.Bk)n (_Si.Br)n IN I

[_(Gi'i_k )n O.'B n-iN . . (,
(-1 -r ) ,t0 (l i_)(_ Br)dt t

iN I

I r y" (Gl.i_.)n (Si,Br)n i0 (IP-Bk)(g'Br)dtIkr - -" " - -

t

} Z Z (Oi.Bk)n (S .B.) n _ N (g,B,.)(i[-Br)dt (

I k r - - -" -" t o -_ -

tN E E t t

I k_ r_ (Gl'-Bk}n (Gi'Brin _ (i' .Bv)(__ .B)dt + :' N(iE.B_)(=_,T.B )dr + :' N(__T.B_)(i_E,B )dr+ JN(uoT [ik)(_T Br)d, )
..... _o " " to -_ - to -: - % .... i

n n .iN I" E t t t

t r (0 .P-ln '.iN d (uIE. Bk) + (_T.Bk) dl })k -i_ll' _to _ - _ _

WHERE

,{:.],.,..,<o.,,.,o.,<<.<,,..,<,':<o:....>:,d,<.1 - - )

I
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_SSUM__.._..._E

E_fBk# =

rHmN

1

0
°'oO]E0 LSt.Bk In =

0

0 -1 +

o £

(G_I" B1)/A¢tl

(G 1" B2_/A _ _1

+ I (GI" B3)/_ _I

+ { BI/A@_I

+ IBoy_®_i

+ (Ss/a¢_,

+ ic./a,_I

J _ , l

+ }_-SSj"_Ii

+ ) CIO/A 011

+ 1c,d_I

+ _Cos/a¢_I

+ t QH/&'_I

A CHOICE OF NOMI_

tf::(_wE'B1 )dt +ftt: (__T']B1)dt)

to -

l_dtt
'_tt:_'B,'dt)
I Jtt: (g" -B3)dt }

J Jtt: (_" _l)2dt 1

( .t_ o l

I jt o '_"-_2@-at l

I it? (B"-B1)(_"_3 )dt}

_-I 'tN (g" B,)(e_.B.)dt 1
-- --A -- --

( _to _ )

(__S. B_I)(_- S. B_)dt

.St? (_E. BI)(__T" B2)d t

(¢_T. B1)(u E" _B2)dt.j,tN -

_0

.2 tN (w T. B1)(wT. B2)dt }
to ....

I ftN-_-d[(,-E.B__)+(,._T.B_3) ]dt 1
t o dt -

I



AL INSTRUMENT AXES

Pp=

+ tmr B_2VA+t2

+ t (G-2"B3)/A+t 2

+ liVe®t2

+ IBd_lit l

+ I BS/"+t2

+ tc,,1_®f2

+ tcm/'<it2

+ t cio/_+t2

+ t cT_llt 2

+ I Q.I"il_

t+;'_<-+"+_+>dr+,':<+_"_,+t}

t+,'_<"+'>dtl
(_::<,-+ti
t-C2++tt

/ I- "L

)S+Nto(r B92atI_

(K" B-_)(K" N )dt

h'_++,+_>dtt
t N t N

_t0 (__E B_.)%t + _t 0 (__T'B_2)2dt

+2_:_ (__ E. _B2)(___T" _B2)dt 1

I -dlt_ (i_ E" B2)(__ E" B3 )dt

__tN (_ E B2)(_T" B3)d t

to - - _

^ (t_T" B_2)(__E" B3)d t
O

t O ....

CHART 4-5

_= t(G"-B1)/_+t- 3 1 _tN (+E'B1)dt+t0 .... _'_<+T'_l>dttI

t N

+ I_.SS,--_,f3 ]Jto ti_-__2j u_; .

+ + CIO/A + +3 {_t_ (_" B_I)(_" ._3)dt t

+ ICIRIACL t.[ tN (g'B_9)(ll'B_)dt 1

t t O - ;

+ 2jtN (_e. N)(IT. N)dt }
to

+ {QL.q/=+i3 14t_ (_ E" B2)(__ E" ._3 )dt

+_"tN (___'. B2)(_T. B3)dt

t o - _

+ _N (_ T. B2)(_ E" B3)d t

U

+j, tN(_T. B2)( T .B3)d t}
to - _

+,,,o++,tC_d+_<_+:",'+<+_+",>_dtt

'FO_ou--7'.F/_t_,_ 4-10
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INTEGRAL EVALUATIONS

ASSUME

ccE, _g and _T are located as shown in Figure 3-2

All transformations between frames follow the convention given by the

following example:

B i = _ T BR R m
m im

+_C = At + 6cwhere _C is the clock quantization error

• The effect of EC is negligible

THE NINE INTEGRALS CAN NOW BE WRITTEN AS:

tNn,_E n _,_, = rLNZ ZZn "Dn'1"nxT TE(_.,E _ _dt
-- "--_i'-" " mnp-irn -mn-np'_ "----p'

to v- to

,j'tl",I___T._Bi ) dt = j'tN _ TBR (_T dt
to to m Lrn -- "--Rm)

_tN_. j'_N r,B_ TB. R RT TE

÷

__l) dt
= -- T np (-g"Ep) dtmnp Lrn Tmn

,J"tN (g_.Bk)(g_.Br)dt

t o

J tN E E

t0(__ .Bk)(_ _' .Br) dt

j"tN E T "

t0(_ .Bk)(_ .Br)dt

stt_0(__T. Bk)(__T. Br)d t

j'tNdt

t o

l to....

TEStN m_ BR RTTTE(g E_[_-BR-RTTus(g._Es dt
to LmnpTkmTmn np -'-Pl[@uslrqlqu

[tN _ZZ BR RT TE a_E
to LmnpTkmTmnTnp (_ "Epl IZZr'_BR_RTTTE(_E'EsldtLqus_rq +qu us _ _

to Lmnp mnlnp___ .E Trq _ .Rq

rtNVzTBR (a_T.Rml _qTrq _ _= Jt0 _ km _ _ BR (_T._Rq)]dt

= tN - t0-=At

BR _T _l tN
=[E EZ BR RT TTE(_E.Ep)+_Tk q_ .Rq.JtoLmnpTkmTmn np'- -
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4.1.2 Accelerometer Equations

As with the preceding gyro equation development, we develop the general accelerometer

calibration equations by introducing the laboratory geometry and environment into the

instrument model. A great number of the comments relative to the development of the

general gyro equations apply equally well to the development of the general accelerometer

equations.

As in Section 4.1.1, we discuss each of the charts in turn.

Fundamental Accelerometer Model (Chart 4-9)

The accelerometer mathematical model was introduced in Section 2.2.2. Chart 4-9 is a

repeat of Chart 2-1, showing the input/output relationships for a vibrating-string accel-

erometer. The notation presented is self-explanatory.

Introduction of Laboratory Environment (Chart 4-10)

In Chart 4-9 the accelerometer output is seen to be influenced by only applied accelera-

tion inputs. Note that the accelerometers are assumed to be in a stationary attitude

relative to the earth. The stationary attitude assumption dictates that all accelerometer

calibrations will be accomplished without a use of the dynamic rotational ability of the

test table. The main reason for this constraint is the fact that a motion of the test table

introduces undesirable angular velocity-related accelerations. (See Section 2.1 of the

trade-off document. )

Approximations (Chart 4-11)

The environment approximations are self-explanatory. All neglected terms are assumed

to have a second order effect on the accelerometer readout.

Introduction of Body Axes and Instrument Indexing (Chart 4-12)

The comments presented in the gyro equation development apply equally well here.

A Choice of Body Axes (Chart 4-13)

These equations are the desired general form. In Section 4.2 the determination of the

calibration constants will be shown to be dictated by a control of the parameters found in

the Environment Evaluation part of Chart 4-13.

4-14
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THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

t b tb t b

_ta f2 dt - Sta fldt = (N2-N1)+ Eq = D 1 St a (a.A)dt

D1 I tb __+ _ta [D0+D2(a'A-)2+ D3(a'A)37dt I

WHERE :

• a is the acceleration applied to the accelerometer

• t a _t _ t b is the time interval over which a is measured

• A is a unit vector directed along the input axis of the accelerometer

• N 1 and N 2 are the number of zero crossings detected in t a _ t _ t b

from both strings of the accelerometer

• Eq is the instrument quantization error due to the fact that t a and t b

do not correspond to zero crossings

• D 1 is the accelerometer scale factor

• D O is the accelerometer bias

• D 2 is the second order coefficient

• D 3 is the third order coefficient

• f2 and fl are string frequencies in pulses/second

I 4-15
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INTRODUCTION OF LABORATORY ENVIRONMENT

ASSUME

a_L = g + Aa is the total applied specific force

Where:

g is the assumed (surveyed) laboratory specific force

Aa iS the deviation of the assumed laboratory specific force from
- the true

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-9 WE HAVE:

t b

(N 2-N l) +Eq = D l_t a
E(g + Aa).A_dt +D 1

I tb

}_t ED0+D2(g'A + Aa'A)2

+ D3(g.A + Aa.A)3_dt L

NOTE THAT THE TEST STAND IS ASSUMED STATIONARY

(THAT IS _TTx(_TTx r) and _TTxr_ WILL NEVER BE SENSED)

I
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APPROXIMATIONS

ASSUME

Terms containing the product of the integrals of components of ha with

D 2 or D 3 have a negligible effect on the accelerometer readout.

(g. A) is a constant over the time interval ta _ t -< t b

°jtb dt = At +e

t o

where:

At = NT, N is an integer and r is the clock period

CC is the clock quantization error

Terms containing the product of _C with DO, D2, or D 3 have a negligible

effect on the accelerometer readout.

WITH THESE ASSUMPTIONS_ THE ACCELEROMETER EQUATION BECOMES:

_N 2-NI) + Eq - D 17 tb(Aa.A) dt - D I(g.A) E]

ta - _

= {D l(g'A) + DI[D0+D 2 (g.A)2 + D3(g.A)3]} At

4-17



I
CHART 4-12

I

I

I
I

I
I

I

I
I
I

I

I
I

I

I

INTRODUCTION OF BODY AXES AND INSTRUMENT INDEXING

ASSUME

B1, B2, and B 3 are a triad of orthogonal unit vectors which have a constant

orientation relative to A_i,where i is the instrument index equal to 1, 2,
or 3.

Therefore, 3

Ai =_=l(Ai'B-k ) Bk

(A_i'B_k) differ from their nominal values (A i. B___)n by small numbers. Those

differences are sufficiently small as to only affect the accelerometer readout
via the proportional acceleration term.

The effect of EC is negligible.

THEN

_ {,__}_ t__f

+ {DI(Ai'B-2)}i {(g'B-2)_t}

+ { D1D2 }i {[k_ r_ (A-i" Bk)n(A-i" Br)n(-g" B-k)(-g" Br)_ At }

+ { DID3 }i II_ _r _In(A-i" _k)n(Ai" Br)n(Ai" B-m)n(g" Bk)(g" E-r)(g" B-m)_ At }

WHERE

rtb (Aa. Ai) dt + Eq
# = (N2-N I)-LDI]i ta - _

The first three terms in the right hand side of the equation include the
effect of the misalignment.

The second order cross couplings due to the misalignment have been

neglected by the second assumption.

I
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[

A
P1

A CHOICE OF NOMINAL INSTRUMENT AXES

ASSUME

-_ o o-
= 10 1 0

_oo _

THEN

= IDI(AI'BI'}I{(g'B1 )At}

+ { DID2 }i {(g-'B-1)2At }
)

+{DI(A2"B_2)}2{(_g'_2)At}

+{D1D0}2 {Atf

+{D1D3t2 {(_g"B2)3At}

+ {D l(A3. B_3)} 3 { (g.B_3)At }

+{D1D2}3 {(g'B--3)2At}
+{D1D3}3 {ig'B3)3At}

ENVIRONMENT EVALUATION

ASSUME

• g is located as shown in Figure 3-2o

• All transformations between frames foilow the convention given by the
following example:

TBR
Bi =_m im R m

THE ith BODY AXIS COMPONENT OF g IS:

(g.B.i) = _ _ _ BR RT TEm n p Tim Tmn Tnp (_g.E_p) (Test Table readout)

= _ _, BS TSE (g. En )m n Tim mn - - (Autocolimator alignment)
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4.2 CHOICES OF CALIBRATION ENVIRONMENTS

The general gyro equations are presented in Charts 4-5 and 4-8 and the general accel-

erometer equations are presented in Chart 4-13. These equations represent the functional

relationships among the instrument outputs, the input environment measurements, and the

calibration constants.

Each instrument equation is linear in n unknown calibration constants. Therefore, it is

possible to determine the numerical value of all calibration constants contained within any

equation from the simultaneous solution of n equations corresponding to n different

measurements of instrument outputs and input environments. Such a technique of con-

stant determination would involve the inversion of an n x n matrix. When n is large, as

it is in these instrument equations, matrix inversion is very cumbersome.

There is, fortunately, an easier technique for determining the calibration constants.

That technique involves the control of the environment inputs (by a control of the test

table parameters) such that the instrument outputs would be insensitive to a large number

of terms. This corresponds to the adjustment of the environment-sensitive coefficients

of a large number of constants in the general calibration equations to zero. If it were

possible to null all but one, the determination of the remaining constant would naturally

be trivial. In this system, however, it is not possible to null all but one but we can in

many cases null all but a few coefficients. In the subsections that follow we will apply

this 'hulling technique" to the calibration of the ERC ISU. The result will be a set of

equations from which any calibration constant can be determined by the simultaneous

solution of at most two equations. Each equation corresponds to the input/output rela-

tionship for an instrument subjected to a particular environment, by control of the test

table parameters.

We begin our presentation, in Section 4.2.1, by dictating the environments and developing

the equations from which the gyro scale factor and (QG)-I matrix can be determined. In

Section 4.2.2 which follows we will show how to calibrate the gyro unbalance, bias, and

square compliance terms. In Section 4.2.3 we will show how to determine the com-

pliance-product coefficients, and in Section 4.2.4 we will complete the discussion of

gyro calibration by describing the experiments for investigating the gyro scale factor non-

linearity and J term. The discussion of the calibration of gyro constants in any sub-

section will assume that the constants discussed in previous subsections are well known

from previous calibrations.

The description of accelerometer calibration begins in Section 4.2.5 with a description

of the calibration of all but the cubic term. In Section 4.2.6 we complete the calibration
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developments by describing the determination of the remaining accelerometer cubic

terms.

4.2.1 Determination of Gyro Scale Factor and Misalignment

In this subsection we show how particular choices of input environments reduce the general

gyro equations to forms which enable a relatively simple calibration of the gyro scale

factors and elements of the (QG)-I matrix. (The matrix elements are sometimes referred

to as "misalignments" from the nominal ISU design. ) Our attention is directed to the

general gyro equations found on Charts 4-5 and 4-8. We will dictate choices of the test

table parameters found in the integrals shown in Chart 4-8 such that the desired angular

velocity-sensitive terms predominate.

We see that many of the integrals found in Chart 4-8 are functions of harmonic terms as

well as terms which increase monotonically with time. The harmonic terms are terms

involving integrals of trigonometric functions of ¢2" Such integrals are bounded in value;

as a matter of fact, if ¢T d¢2- can be made constant, the harmonic terms would equate
dt

to zero for any multiple of whole turns (_2 = 2n_r) of the table. Under such conditions a

large number of the terms in Chart 4-8 would disappear. In Chart 4-14 we see the sub-

stitution of the integrals into Chart 4- 5 under the condition of whole turns of the table,

while rotating at a constant speed. (See Section 2.1 of the trade-off document for further

comment about whole-turn equations. ) The assumptions made in the equations in

Chart 4-14 are shown at the top of the chart. The condition on the transient terms re-

quires additional comment.

The ERC table will have a precision limitation on its ability to rotate at a constant speed.

That limitation is two parts in ten thousand, that is & T/ T <_2 x 10-4; where A T is

the error in the speed of the table, and T is the speed of the table. Assuming that a

maximum error of plus ( is evidenced in a first half turn, and a maximum error of minus

is evidenced in a second half turn, then

2_ _ 2_

_0 sinC2dt = _0 sin(_T+ A_T)tdt_ _ sin(_T-_c°T)tdt
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During all scale factor and misalignment determination experiments the maximum possible

speed will be used. That speed will be just below the saturation level of the gyros, which

is 15 degrees per second. (See Section 2.1 of the Trade-Off Document for further com-

ments.) Under such conditions:

The proportional transient terms go as
E

¢_ _A = 120 x 10 -7 deg = 0.04 _'ec (per revolution)

The unbalance transient terms go as

BgA = 8x 10-7deg

The compliance transient terms go as

Cg2A = 0.32x 10 -7deg

which are all obviously very small and can be neglected (under the assumption, of

course, that the above analysis typifies the worst-case deviation from a constant speed).

Referring again to Chart 4-14, we see that a horizontal position of the test table rotary

axes (i. e°, ¢1 = 90°) would null all unbalance terms. Chart 4-15 introduces that condi-

tion. The remaining test table control parameters in Chart 4-15 are the first column of

the T BR matrix. (The first column of the T BR matrix dictates the orientation of the

table rotary axes (R 1) relative to the ISU body axes. ) The orientation of _R1 is a function

of the inner and outer gimbal angles (¢3 and ¢4). Having two gimbal angle degrees of
freedom dictates that any values of the first column of T BR can be requested. (Equating

the T BR choices to ¢3 and ¢4 settings is the subject of Section 4.4.2. ) In Charts 4-16,

4-17, and 4-18 we show the calibration equations for six choices of the first column of

T BR. All choices are shown at the top of the charts. We see that

Chart 4-16 corresponds to the alignment of the first body axis with the rotary
axis in both the plus and minus sense.

Chart 4-17 corresponds to the alignment of the second body axis with the rotary
axis in both the plus and minus sense.

Chart 4-18 corresponds to the alignment of the third body axis with the rotary
axis in both the plus and minus sense.

In Charts 4-16, 4-17, and 4-18 the test table parameters have been completely specified.

The first table gimbal angle ¢1 is equated to 90 °. The second gimbal is rotating over

whole turns at a constant speed. And the third and fourth gimbals are implicitly specified

by choices of the first column of T BR. We will refer to these six orientations as Posi-

tions 1 through 6, respectively.
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We note in Chart 4-16 that only the first terms in the three gyro equations have opposite

signs in Positions 1 and 2. Therefore, those terms can be isolated as a function of pG

(k = 1,2, 3) by simply subtracting the equation for Position 1 from the equation for Posi-

tion 2. From known inputs and known P_ values the first gyro constants canenvironment
G

therefore be determined. (The manner in which Pk is known is the subject of Section

4.3.1. ) The second and third constants can be found by similar uses of Charts 4-17 and

4-18, respectively. The final equations for the gyro scale factors and (QG)-I elements

are found in Section 4.3.2. As a matter of convenience the computational equations from

this and subsequent subsections are tabulated at a single point in this document, which is

Section 4.3.2.

4.2.2 Determination of R, BI, BO, BS, CII and CSS

Subsequent to the calibration of the principal angular velocity sensitive terms (scale

factors and (QG)-I elements), the gyro equations predominantly contain, as unknowns,

acceleration-sensitive terms (i. e., unbalance and compliance coefficients). This pre-

dominance is even more evidenced when the angular velocity input is controlled to a small

constant value. Under that condition the remaining angular velocity terms (QII and QIS }

become relatively unimportant as influences on the gyro outputs. These points suggest

that the calibration of the unknown unbalance and compliance coefficients should be ac-

complished under the conditions of extremely small angular velocity inputs. Not only

will the QII and QIS be negligible, but also the imprecision in the already calibrated scale
factor and (QG)-1 elements will have a minimum influence on the precision of the unbalance

and compliance coefficients to be determined.

In Chart 4-19 we present the general gyr0 calibration equations under the influence of the

minimum practical angular velocity environment. That angular velocity input is earth rate;

that is, the table is stationary relative to the laboratory. We say minimum '_0ractical"

environment because it would be possible to rotate the table at near minus earth rate, thus

reducing the total angular velocity input below earth rate; but earth rate alone is so small

that there appears to be no reason to try to regulate the speed of the table to a small number.

At the top of Chart 4-19 we present our gimbal angle choices of _1 = 0 and ¢2 = 90o. There

are several reasons for these choices. First, it must be pointed out that we are interested,

for the purpose of calibrating acceleration-sensitive coefficients, in controlling the

orientation of only the input _gvector relative to the body axes. To completely control one

vector relative to the body axes requires only two orientation degrees of freedom. Two of

the four test table degrees of freedom can therefore be chosen for matters of convenience.

We choose the particular values of ¢1 and ¢2' as shown in Chart 4-19, for the following
reasons of convenience:
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GYRO CALIBRATION W

ASSUME

For whnle turns of ¢2:

1) All transient terms are negligible

2) Terms nf 0(E) 2 are negligible

3) Terms of 0(-'EA¢ 2) are negligible

4) ¢2 is constant

For whole turns of ¢2 the gyro equations are

given on this page.

Pf:

+{

(G_I"B1)/A* } [A¢ 2 + EAt COS(¢ 1 + X)] TIBf
- 1

(_-1"B-2)/A¢}1 C_'¢2+ _t cos (¢I+ _)lT_p

(6-1"B-3)/A¢ }Ic_¢2+ _At cos(h + _)lT_

WA@}I CAt]

BI/A*}I CgAt COS ¢17 zBf

BO/ACtlI'gAt COS ¢1 _ TBf

_o,$g_co_°1_T_1_t
I-g_._t-I

C A_ F t'Ig2At TBR 2
SS / }ILTJ C( 21 ) (_ c°s2 ¢1-1) + sin2¢l]

Fg2Atl

"-11 _31 ¢1-1)__io/_°tlI_T_I___R <_cos_.

_/_ °I, -_g#t1CT_pT_(_ cos_¢1-1>7

_-21 I31

Q,I/4,}C(J)_t_(T_)2
1

{ QIS/A _ }if_C( T)2At 7 I11121-BIL_BR}

÷ Ij/_,} 0
I



CHART 4-1,

IOLE-T URN EQUATIONS

p G --

t(G_2" B_I)/A_}2 fA_ 2 + EAt COS (_1 + )_)] TBR

+ { (G_2"B2)/A@t2 [A_ 2 + _EAt cos(_ 1 + )J] TylR

+ { (G_2"B3)/A@f2 [A_ 2 + _,EAt cos(_ 1 + _.)] T_ R

+ I R/A_}2 [At]

* )BI/AOI2[gAtcos _l]Ty R

+ tBo/AOt2[gAtcos¢I]TfR

+ tCII/A_f2 [g_'_l C(T_R)2(3 c°s2_1"1) + sin2_l]

+ t Css/AOt 2 _g22"_t] [(TBIR)2(3 c°s2 _1=1) + sin2_l]

+ I CIO/A_I 2 _g22-__t] r-BR-BR''11"21 (3 cos 2 ¢1-1)]

+ _ CIS/A_I_ Ii-?At 1 _121r_BR_BR (3 cos2_l-l)]l'j'31

+ { COS/A 4_I- Ig22-?Atl [TflRT_IR (3 cos2 _1-1) _ 1

+ I QH/A • 12 [ (wT)2At ](T_IR) 2

1QIS/A _)}_- [(T)2At _ I21T31-BI:L'BR}

1:)_= _(G_3. B_I)/A*} 3 [A_ 2 + EAt COS(_ I + k)TT BR

+ {(G3"B2/A_}3 EA_ 2 + _EAt COS(_ 1 + k):T_IR

+ _(G3"_B3)I_O}3 [A¢ 2 + EAt COS(V 1 + _.)]T_R

{pv/A # }3 CAt]

tBi/A@}3[gAt cos _1 ]TBR

{Bo/A_I [gAt COS _1]TIB1 R
"3

+ {Bs/A@}3[gAt cos _I]T BR

+, CII/A. }3 _22-22_Atl _(T3B_)2(3 cos2_1-1) + sin2_l ]

r 2At-i
+ ICss/A I3L -J_(T2)2(3 cos2¢1-1) + sin2¢ 1]

Fg2At7 "111 "31 (3 cos2_1-1)]

2__t] r_BR-BR+ {CIs/A_} 3 ''21"t31 (3 cos2_1-1)]

+ {Cos//_)}3L--_--j LI11T21 (3 COS2_1-1)]

{QII/A _}3 [(T)2At ](T3BR)2

[(c_ ) At]T2_RT31+ tQIs/A _ f 3 T2 B BR

+ Ij/A }3 0
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¢1 = 90°

¢2 is moving (whole turns)

P?=

GYRO CALIBRATION W

(G 1. B_I)/_¢I1 [ZiC2-Jzst sin lJ TB1R

(G 1.B2)/_@}l [A_2-u'EAt sin k] T2B1R

(G_I. B_3)/A ¢ I1 rA¢ 2- EAt sin k] T_ R

R/A¢ f 1 [At]

Ss/_ ¢I1 0

[g2_.t]

t CSS/A¢I 1 I_ ] [1 - (T_IR)2"_

I CIO/A' ll-[g_] [TIBIRT3BIR] 1

g2_t --BR _BR.,

'CIs/A_fl I_][121 _31J

{Costal} I_ 1 r'SR'BR7_-21 -31 J
1

t QII/4¢f 1 [(T)2_t][(T_ R)2]

t QIS/A_ 11I-C(_T)2At] *Illr-BR_BR"21j I

_T_ _._ t



HOLE-TURN EQUATIONS

t(g2" B1)/z_*I2 [A_2-EAt sin k_ T1BR

t(G2" B2)/A_I2 [_2-_EAt sin k] T_ t

(G_2"B3)/A_ f [4_2-E_t sin X] T_I R
2

_(G3" B1)IA _[ 3

_(%.B_{,,_ _3

[A_2-E4t sin k] Tp R

[A_2-EAt sin _] T_ R

BR

t( % • B_S)/A_ f3 [A¢2-EAt sin I] T21

R/4 0_2 CAt]

BSI4• t20

%14 01 Ig24t] El - (T_R)h
2 LzA

122__1 BR_BRI)CIS/4012 [T21 _31 J

)Cos/AO) [g22_t][ -BR-BRIIll _31 J
2

IQII/4 012 [(T)2At][ (T_R)9. ]

+

+

1%/40t3 [4t]

Bs/4•f3o

CII/A 0 _3 _g#t 1 L1- (TBR)27

ACl-{T_R)2]

tCio/4%IE¢] [T1BIRT3%R_I

( Fg24tl r_BR_BR,1

g24t _ BR _ BR.

tQII/A OI 3 [(_T)2At][(TBR) 2]

) QIS/_ 0 i 2)- [ ( _T)24t ] [ T_ T_15 t + IQisl4 <_13 [ (T)24t lITeR TBR]

+ IJ14_f3 0
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71 = 90 °

z2 is moving

TBIR -_± 1

TB1R = 0

TB1R = 0

AxR°tary Rotary

If East

AxisTrunni°n _1_ AxisTrunni°n

+

GYRO CALIBRATION WHOLE-_I

BI/A* }1 0

+ ICII/A ¢I 1 0

+ {Css/Ae)} [g2Z_t/2]
1

I CIo/_¢}lO

{ CIs/A_fl 0

+ {Cos/_,}lo

+ I QII/4*} [(_T)2At]
1

{ Qts/a _ }l o



URNEQUATIONS POSITIONS 1 AND 2

_f: t'_-+_-_-°t_l+_°_.-o'_si,_l I

+ t(G_2.B_2)/_+_2o

+ I(%"B3)/"e_ 0
-- -- 2

+ IR/,,+I[At]
2

+ IBI/_+I_+o

+ t CII/A _f 2[g2At/2]

+ l CSS/A¢t 2[g2_-t/2]

,-IC,o/,'+lo

+ IQ,.,/A<,to
2

+ +Q,s/,,<,to
2

+ +J/+<,t2o
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+ I(C_,_3.B_3)/ZX4_f3 0

+ +Bo/,..,<,t+o

+ +Bs/,,<,t3o

+ + C./A @ t3 [-g2At/2 ]

+ I Css/A ¢ t31-g2At/2]

+ I CIO/_ +t3 0

+ +cm/A<,t3o

+ I Co_A +t 3 0

+ {%/,,,,,} o
3

+ {QIs/A¢}3 0

+ i+/+,+,}:.+o
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GYRO CALIBRATION WHOLE-T1

¢I = 90 °

_2 is moving

TBIR=0

TB_ = _-1

TB_=0

Q Un _Rotary... Un ..Rotary

_1 Trunnion _IT runnion

G

P1 = I (GI"B1)/'<_tl 0

+ t (G_I. B2)tAO_I_*[A¢ 2 - EAt sin _.]_

Bo/_,llo

CII/A 4ilir g2At/2 ]

+ CsslA_'[1 o

+ iClo/_,llo

+ l CislZX_llo

+ t Cosl,,,l o
1

+ _QIIA,tl 0

+ tQlstA,ltl 0

+ t j/,,,l, ll o
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pG: I(0-2"B-1)/A_I2 o

+ {(_-2"B-2)/A®}2_*P'_2-_,,t _m_,]

+ I(0-2"B-3)/]'_}2 o

+ IBI/_+I_.o

CSS/A'I_ 12 [g2At/2]

+ C,o]_+l o
2

+ cm/_+f."o

+

Cos/,,+I o
2

Qtt/A'+}_+[(J)2At]

+ {Qm/"+}_.o

+ {J/"+t_+o

+,_:t(c3.B_1)/,,+t o
3

+ +(Gs.B_,_,t,t:++-,-[A<_ 2- E+tsin>.]t

+ I(G_3.B3)/,,®ISo

+ {Bo]A+t3O

+ {BsJ"+}0

+ {C"/"®}3[g+_t/_+]

+ ICss/,,+}3o

+ {Cio/,'-+}+o

+ {cts/,,+}3o

+ tCo_++} o
3

+ {QII/A+t3 0

+ {Q,s/A+}3o

+ {J/]'+t3 o
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GYRO CALTRRATION WHOLE-'{

¢1 = 90°

¢2 is moving
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J Axis _ _.unnion
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P? = { (GI" B1)/A@I1 0

+ { (O-1"B--2)/A@}I 0

+ { (G-l"B-3>/A@}I{ +[_¢2 - "'EAt sin k] }

+ I WYkO(1 F_t]

1

+ {BoJ_,}1o

+ {BsJ_®(,o

+ {CII/A@}I [g2Atl2]

+ { CSS/A ¢} l[g2At/2]

+ IC,oi_,ll0

+ {Cosl_¢( o
1

+ {Q,,J'+},o

+ {%/"+I,o
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URN EQUATIONS POSITIONS 5 AND 6

Pf = t(G_2"B1)I_4_2 0

+ %1_+t2o

+ Bs/_+t o
2

+ ICII/A¢I 2 [g 2at/2]

+ lCssla+f2 o

+ tCIo/A*f2 0

+ tcmt,,if_, o

+ tCoslaif o
2

+ tQu/_it z o

+ I%/,,<>f_.o

+ t J/++t2 o

_= t(_c3.Bi)/"+t3 o

+ t(c-3"IdA+ f3 o

+ t(G3. B3)/Ait3i+[A+ 2 - EAt sin _] t

+ tCIo/++t3o

+ Icml,,<>t3o

+ {Qtsl,,,.it3o

+ ljl,,.it+ o
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The value ¢1 = 0° is chosen because it results in the same ¢3 and ¢4 settings
for the six positions required for the subject calibration as required for the first
six positions.

The value _2 = 90o was chosen for two reasons: the first reason is that it places
the _3 gimbal in the north-south direction, and that gimbal, in conjunction with
the east-west ¢1 gimbal, can be used for small angle corrections of the table

base motions as measured by b u_ble levels (see Section 4.4.4). The second
reason for the choice of ¢) = 90 is that it results in only the second column of
TBR being required in calibration computations° This results in a minimum
amount of data handling during precalibration survey activities.

The equations in Chart 4-19 contain, as control parameters, only the first and second

column of the T BR matrix. The acceleration-sensitive terms are, however, a function

of the first column only. The table orientation control will therefore be preoccupied with

that column. In Charts 4-20, 4-21 and 4-22 we introduce the choices for the first column

of T BR corresponding to Positions 7 through 12. These choices for the first column of

T BR are the same, respectively, as they were for Positions 1 through 6. With the

assumption that the first three gyro coefficients are known from the calibration described

in the preceding subsection, we see that Charts 4-20, 4-21 and 4-22 present six equations

in the six unknowns:

R, BI, BO, BS, CII, CSS

We note that at most two equations are required for the solution of any required unknown°

In Section 4.3 the solution of the equations for the six unknowns is presented.

4. 2.3 Determination of CIO , CIS and COS

The three product-compliance coefficients (CIo, CIS and COS) were not evidenced in any

equation for Positions 1 through 12. None of those positions senses the minimum of two

body-axes components of acceleration required for the detection of product-compliance

coefficients. In this subsection we choose three additional laboratory-fixed orientations

(Positions 13, 14 and 15), each position detecting two (and only two) body-axes components

of g. On Charts 4-23, 4-24 and 4-25 we present the instrument equations for those three

positions. In each equation on those three charts there exists only one unknown product-

compliance coefficient. The solution for that coefficient, in terms of the known input

environment vector pG, and the previously determined calibration constants, is found

in Section 4. 3. The determination of the second column of the T BR matrix is considered

a precalibration activity. In Section 4.4.3 that activity is described.

_) A (_.xT_h Mhnl_n_'_fx7 _n d J Tp_-rn ]_Ypprin_pntc

There are three remaining constants to be described, namely: QII' QIS and J° The

QII constant is intended to represent the scale factor nonlinearity. In the following
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¢1 = 0°

¢2 = 90°

Let:

eosk T1B1R +sink TB_

cos_ TB1R ÷sinX T BR

eosk T3B_ +sink T BR

Assuming 0(E) 2 is negligible.

= x 1

= x 2

= x 3

P?_ (G 1" Bl)/'x¢ I [wESt]x1
- - I

_G1. B_2)/"• 11[EAt]x2

(G 1" B_3)/A _ Ii [ EAt Ix3

a/A¢_l [_t]

BI/A* I 1 [g At]T_I R

BO/A ¢Ii [g At] T3B1R

Bs/_¢I I [g_t]T_l_

I CII/_ _I 1 [g2At] (TIBR)2

t CSS/_¢I 1[g2_t] (T_IR)2

tCioJ,_._lEg2_t__[_ T_I_

_c_/, _flt-Eg2_tlT[_T_I_t

I COS/_¢11 ]-[g2_t] TBR TB_ I

I QII/A@I 1 O

QIS/A_fl 0

t J/"*t o
1

GYRO CA LIBRATI(



CHART 4-I_
_N FIXED ORIENTATION

pG = I(G2 .BI)/A@I2[EAt_Ixl

+ I (G-2"B2)/A*I 2 [EAt]x2

+ I ¢a-2"B-3)/"*I 2[EAt] x3

+ )Rt_+(2 [_t]

+ IBI/A* 12[g At] Tp1R

+ IBo/A ¢I2[gAt]TpR

+ _CII/A ¢I 2 [g2At] (TpIR)2

+ tCss/4*f2 [g2At] T_IB)2

2

+ )CIsJA*f2)-Ig2At ] T_ R Tp1R 1

+ tCos/A*_21-Eg2_t7 TBRTBR_ll31

pG = _(__oB1)/A@} 3 I-aEAt]Xl

+ {(%-B_2/A+}3[E_t]x2

. _(G3._B3)/"¢_3[EAt]x3

+ tW" ®13EAt]

+ _BII=+I3[gAt] T_R

+ _Bo_4t@t3 [gAt] Tp1R

+ tB_/A@t3[gAt] T#I R

+ _CII/A*_3 [g2At_ (TpR) 2

+ _ CSS/A*f3 Eg2At] (Tp1R)2

+ ICio/4¢13eg2&t] TpRT_ R

+ I Co_ A ¢I [g2At] TpIR TpIR
3

÷ IQ./_+Io
2

+ +%/+*I o
2

+ +j/A<,I_. o

+ +QIt/,,,I3o

+ {Qis/_,+t3o

+ +j/A,+I3 o
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¢1 =0°

¢2 = 90 °

TBIR = ± 1

TBIR = 0

TBIR = 0

Up

Rotary
Axis

Axis

GYRO CALI_RATION FIX_ f

R_IB_I - @ Up,

._' _2 Rotary

/ _s

Trunnion
Axis

Axis

,a_1

feast
Trunnion
Axis

B 1

G _ [± EAt]cos
P1 = I (G-l" B1)/A¢I 1

+ _ (GI"B-2)/A¢I1 [_EAt]sin _. TB_ 1

+ I (GI" B-3)/A¢ _1 [EAt] sin _ T BRI

+ IR/A¢II [At]

+ I BI/A¢I1 [+gAt]

+ I BO/A¢I 1 0

+ I BS/A ¢_1 O

+ t CII/A¢f I [g 2At]

+ ICss/IX¢I1 0

+ ICIo/A@I 1 0

+ Ic_/,_11 o

+ t Cos/_@(1 0

+ tQu/"_l o
1

+ IJ/"_l o
1



RIENTATION POSITIONS 7 AND 8

r_: {(C2.B_):+I2 E_EAtlco_

+ {(C_2.B_2)/A+I2 [E_tlm_T_ I

+ {(C_2.B3)IA+}2[.EAt3m_T3_1

+ tR/A_}2 [At]

+ IBI/_®}2 o

+ {Bo/A+}2 F+gAt ]

+ _Bs/a+}2o

+ lc,,/_+t2o

+ {.%/a + }2o

+ tC,o/_+ t o
2

+ t crs/a+}2 o

+ {Coda+f,"o

+ {Q#,,+to
2

+ lQ,s/"+t20

+ {jia+t20

+ {(c3.s2/,,+t3[EatIsin_T_'

+ _(%.S_3)/"+}3[Eat]sin_T_ I

+ {Bo/A+ } E+gAt]
3

+ {ss/_+t3o

+ {Co¢_+t3o

+ {QII/A+} 0
3

+ {m,s/""}3o

+ {j/A+}3o
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_2 = 90°

TIBIR=0

T_IR = ± 1
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Rotary jR2Axis

t_/"/er Trunni°nAxis
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GYRO CALIBRATION FIXED OR]

Up'R1

Rotary
Axis
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J Ea-R2st

Trunnion
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'B_2

P1G= t(GI" B_1)/A4_}1 I'_EAt]sink T_l_ 3

+ { (G-l" B-2)14 i tl F i a_EAt ] cos

+ t (G-l" -B3)I_t tl [ llZAt] sin k T_2R3

+ t BI/A@tl 0

+ Ic,o/_,}l o

+ t Cisl41}l 0

+ {Cod_i}1o

+ tQ,i/_,fi o
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ENTATION PO_ITIONS 9 AND 10

pG = I(G2. B1)/A_I 2 [_oEAt]sin kTBR3

+ t(G_2-B_2)/_@t2 [±uoEAt]cos k

+ I(G2"B_3)/A_2 [_oEAt]sinkT_ R3

+ t BI/A¢f2 [ _gAt]

+ t%/_+f2 o

+ tBs/_+t o2

+ t CII/_ _f2 [g2At]

+ lCss/+,+t2o

+ tc,o/.+f2 o

+ tcm/_+f2 o

+ _Cos/_+_2o

+ tQu/_+t2 o

+ IQm/_'®t_+o

+ ++/++12 o

P3G = {(G3. B1)/A_,j_ 3 [_EAt] sink TBR3

+ {(G_3. B2/A+t3 [±t_EAt]cosk

+ t(G_3. B3)/A+I3 r_EAt_sink T_ R3

+ tR/A ¢t3 [At_

+ IB+/A+t3 o

+ C,o/++I3 o

+ cm/A+t3 o

+ COS/,x +t 3 0

+ {mii/A+t o
3

+ {Qts/A+t3 o

+ Ij/A+t3 o
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_i = 0°

¢2 = 90°

T_ R =0

T BR = 0

TBIR = ± 1
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Rotary
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GYRO CAUBRATION FIXED ORI]

RIB3 R _ U_
f-2 Rotar'

J Axis
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Axis

/::t
Trunnion
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B_3

_ _ [_E_t]sinX T?2 R5P1G = I (GI"B1)/A¢}I

BR5

+ I(GI. B2)/_@}I [_EAt]sink T22

+ { (G-l"B_3)/A¢fl [+_oE_t]cos _,

+ { R/A¢}I [_t]

+ { BI/_¢}I 0

+ {c,,/_,}Io

+ lCss/_¢ll o

+ ! CIo/A ¢Ii 0

+ {Cos/_¢} o
1

+ I QII/_¢}I 0
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+ {j/_¢}, o
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_TATION POSITIONS 11 AND 12

pG = t(G_2. B1)/A¢I2 [ooEht]sinkT_2 R5

+ t(G_2"B_2)/A¢I2 [_oEAt]s inkT DR5

_ t(%.Bp/,,,} [_E_t]_x T_ s
-- 3

+ _(C3.B2/_,*}3 [_Eat]_mx TB__
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+ t(G2"B3)/A¢} [±ooEAt]cos k
- 2

+ { R/A@}2 [At]

+ {B,/A®}2o

+ {BoIA_}2o

+ _ BS/A * } [+ gAt]
2

+ 1CII/A ¢}2 0

+ { CSS/ACI, }2 [g2At ]

+ I CIO/A *} 0
2

+ {Cosi_,$ o
2

+ IQII/A *} 2 0

+ _QIs/A @}2 0

+ Ij/A¢}2 o

+ t(G3. B3)/A ¢ }3[ +_oEAt] cos k

+ {R/A¢ }3 [At]

+ {Boil,c}3 o

÷ {Bsj_}3o

+ )CII/A@ }3 [ g2At ]

÷ _Css/_¢}3 o

+ {Cioi,,13o

+ {Cos/_} o
3

+ {QII/A _} 3 0

+ {QIs/A @ }3 0
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¢1 = 0°

¢2 = 90°

T_ = 0

x I = _ COS k + TB_13sin X

x 2 : _ cos X + TBR13sin _,

x 3 = TBR13si n _,

Axis

I__1 Rotary

Trunnion
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GYRO CALD_RATION FI
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1
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0
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[ _V(_'2 g2At]
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+ {Cos/A¢}l o

+ IQ,,/"*}o
I
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XED ORIENTATION POSITION 13

P2G = I(G2. BI)/A¢ I [o_EAt]x I

+ t((3_2. B2)/A@I2 [_EAt]x2

+ I(G2"B3)/A_I2 [_jEAt]x3

+ IB{,,¢12 [q'i-Y2g,,t]

+ I%/,,_,}2 [qY)_g,,t]

+ {Bs/A,_I2 0

+ {CII/A¢f2 [1/2g2At]

+ t Css/a_f2 o

+ lCio/a¢f2 [1/2g 2At]

÷ lc_la_f2 o

÷ 1Cos/"*fzo

÷ tQ,¢_*t_. °

+ I%/a_12 o

+ I _/_¢12 o
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pG= {(G3. B1)/A¢t [_EAt Ix 1
_ 3

+ t(%.s_/_¢l 3 [=E_t]x2

+ I(G_3-B3)/A@f3 [ooEAt]x 3
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+ l BI,/& ¢ 13 0
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ED ORIENTATION POSITION 14

pG = I(G2. B_I)/_¢I 2 [_EAt]Xl

+ I(G_2.B_2)I_I2 [_EAt]_
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(_IENTATION POSITION 15
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cEscussions we will describe not only how that constant is found, but also any other higher

order _ sensitive coefficients that are evidenced in the gyro readout. The QIS calibration

is not presented. It is assumed that this term is too small to be detected. The last

paragraphs in this subsection discuss the calibration of the J term. It will be seen that

this calibration requires test table speed controls not found in any other calibration.

Gyro Nonlinearity

The QII term in the gyro equation was described in Section 2 as the nonlinearity term.

This term is intended to describe, in conjunction with the scale factor term, the output

rate (say P) as a function of the input (say _) as:

_=A+Bw+C_2

rather than the more familiar

P=A+B_

The interpretation by many is that this term introduces a nonconstant scale factor as-

sumption, that is

=A + (B +C_)

Regardless of the interpretation, it seems appropriate to assume nothing about the highest

power of _c and in fact to try to conduct experiments to find all coefficients (say Ak) where

= A0 + Alo__+ A22 .... An _n

Such experiments are very simply described but would probably be somewhat time con-

suming to implement.

Let us direct our attention to the equations for the one gyro in Position 1, the two gyro in

Position 3, and the three gyro in Position 5. We see that each equation can be written:

P
= A0 + Al_C+ A2_c2

At

where
--U

A 1 =

A 2 =

R,,' A__ + f(acceleration)

Gk. _Bk. Aq, _ 1/_._

QII/A_
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If experiments are conducted where only c0 is changed (and not acceleration), A 0 would

always be a constant. We see that a variation of the table speed only, in the positions

mentioned, accomplishes this need. Also the equations can be generalized to contain higher

order cc terms. That is:

p/At =A 0+A 102+A 2022 +...Ancon

The experiments can now be delineated:

Collect gyro data E 5 from Position 1, 3, or 5 for n different speeds of the
test table.

Collect the table speed data by measuring _2 and At.

A_2
_T_

At
-_ for constant ccT and whole turns of _V2"

Let the total speed imposed on the gyro be described by

Let P be given by

A _2 E
=_ +'_ sink

At

At

that is, data is collected sufficiently long such that quantization and noise are
negligible (see Section 2.2 of the Trade-Off Document).

• Plot P against 02:

#

02

Analyze the plot to find f, where i_ : f(,_).

J Term

The environments chosen for the determination of the J terms are shown in Chart 4-26.

Note that the positions chosen correspond to Positions 7 and 11 (which were used in

Section 4.2.2 ) with the modification of a rotating table. The gyro data will be collected

over a period during which the angular speed has changed. This calibration is the only

one which requires the determination of the time-varying integrals:
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GYRO CALTRRATION ROT 1

ASSUME

Terms containing (,.,E)2are negligible

Terms containing the product (4 _oE and

_Gi.Bj for i _ j are negligible

Position 7 (P?)

_i=0

_?po
T_p=o

POSition 11 (P_ and pG)

¢_1=0

_p=o
_p=o

P?=
I((31"BI)/4@11 r Yl]

{ (G-l" II-2)/'<<i't l o

+ {h/,,,fl o

[gAt]

0

+ _ CII/A 6fl 0

+ {CsstA_>flo

+ t CIO/AOfl 0

+ tc_/,,tfl o

+ {cosl,,i} o
1

+ tQII/A<i't I o

+ {Qlsl,,tl, o

+ tJ/"t} 1 [A=T]

FTBR rtN _BR rtN ]
where Yk =_JE sinxL k2 Jt° sin@2dt+ cos ¢2dtjk-k3 Jt °

@OL$,OU_ FP_AMT_



ring TABLEPOsrnONS7AND11

+ {(G-2"B-2)/Aet2 [ Y2]

+ _(c-2"B-S)IA+12 o

÷ tBI/,_+I2 o

+ _Bo/A¢'I2 [ g/It]

P_= I¢%'__01"®I ["'2]
3

+ l¢c-s"_d" _Is o

+ l¢%'B_3)l"®Is[y3]

+ llv,,®Is [,,t]

+ IBi/_+13o

+ tBo/U,[3 [gAt]

+ i CIO/_ @i2 0

+ Icm/_+12o

+ tcos/,,,i,f o
2

+ IQ,,/,,+I2 o

+ l<+tsl,,<>t2o

+ 1'si"<i>t2 [_=m]

1, 2or 3

+ tBd,,+t3 o

+ tcid,,,<i>t3o

+ tCml,,<>t3 o

+ tcod,,<,t3 o

+ {,_d,,,+t3 o

+ {%1,,,+t3 o

+ ljl,,,,it3 [ A=Tl

FOLDOUT FEA_ 4-39
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• _ sin¢2 dt

dt• _ cos _2

The manner in which these integrals are determined will depend completely upon the man-

ner in which the test table angular acceleration is commanded during the experiment. The

calibration procedures will therefore be dictated by the commanded angular acceleration

profile. There appear to be only three interesting alternatives:

The first alternative, which appears to be the best, is when the angular
acceleration can be controlled to a desired function of time. In that event
the aforementioned integrals could be evaluated prior to the data collection.
A good example of a commanded profile might be a constant angular acceleration
over a short data collection time.

Another alternative, almost as good as the above, would be an angular ac-
celeration profile which is an analytic function, but not known until the time
of the experiment. An example would be the ability to command a constant
angular acceleration, but not any given constant. In this event the integrals
would be evaluated after data collection.

The least attractive alternative would be when the profile cannot be commanded
as a clean analytic function. The J term experiment could be conducted under
such circumstances, but there would be a requirement for the _2 resolver
to be collected in real time for the purpose of evaluating the integrals.

There is no reason to specify which of the above alternatives is to be used until the test

table is evaluated to discern its ability to control angular accelerations. As a consequence,

the J term equations in Section 4.3.2 are not specified as the equations to be programmed,

as are the other calibration constant equations. Instead they are presented as functions

of terms which will be described as functions of the angular acceleration profile at that

time when the control characteristics of the table are better known. As a matter of con-

venience to the reader the form of the equation is presented for the case when a constant

angular acceleration profile is commanded.

4.2.5 Determination of Accelerometer Coefficients

The general accelerometer calibration equations were developed in Section 4.1.2, and

the results presented on Chart 4-13. We recall that it was assumed in the development

of those equations that the test table would always be stationary (relative to the laboratory)

during the entire accelerometer calibration. We recall also that nine of the gyro positions

were also stationary. Analysis shows that the nine stationary gyro positions are very

good choices for the entire acceAeromete_ t;,t_lu,,ttlu,l.
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We mentioned in Section 4.2.2 that, subsequent to the calibration of the principal angular

velocity-sensitive coefficients, the gyro acceleration-sensitive terms predominate as un-

knowns. Thus, when concerned with calibration only, we can treat the gyro as an acceler-

ometer. We note that the three unbalance terms in the gyro equation play the same role,

functionally, as the three scale factor and (QA)-I terms in the accelerometer equation.

We also note that the square term in the accelerometer equation appears functionally

the same as the square compliance terms in the gyro equation. These facts, and the fact

that the gyro and accelerometer input axes are nominally aligned, results in the use of the

same positions for the determination of acceleration-sensitive coefficients in both the gyro

and accelerometer equations.

In Chart 4-27 we see the accelerometer equations when _1 = 0° and ¢2 = 90o. As with

the gyro calibration discussed in Section 4.2.2, the accelerometer calibration requires

only two table angle degrees of freedom. Therefore, two of the four table degrees of

freedom can be arbitrarily chosen. The particular values of ¢1 and ¢2 shown in Chart 4-27
are chosen for the same reasons mentioned in Section 4.2.2 (where the gyro bias, unbal-

ance, and square compliance calibration is described). In Charts 4-28 and 4-29 we present

the accelerometer equations for Positions 7 through 12. We note that all but the cubic

term can be explicitly extracted from these equations. (The cubic term always appears in

any equation with the scale factor term and therefore cannot be separated from the scale

factor term. ) In Section 4.3.2 the explicit solution for the accelerometer bias, square

coefficient and off-diagonal (QA)-I matrix elements are presented. Three additional sets

of equations are presented which relate the scale factor and cubic term combination to the

instrument and environment measurements.

4.2.6 Determination of Accelerometer Cubic Term

It was noted in Section 4.2.5 that the six positions (7-12) did not allow for the explicit

evaluation of the cubic or scale factor terms. We therefore require additional positions

for the extraction of the cubic terms. Positions 13, 14. and 15 (described in the calibration

of the g_ro product compliance coefficients) are appropriate as the additional positions.

In Charts 4-30 and 4-31 we present the accelerometer equations for those positions. The

equations for the solution of the cubic terms are presented in Section 4-3.

For each accelerometer, either of the two positions in which the corresponding body axis

is nominally oriented 45 ° off the vertical may be used. Therefore any two of the three

positions may be chosen to complete the calibration. The equations presented in Section

4.3 utilize Positions 13 and 14.
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ACCE LEROMETER CALIBRATION

¢1 = 0°

_2 = 900 (trivial)

I_1= I'DI(AI"B1) }1[ g_t] T_ R

+ DI(AI'B2)}I[gZXt ]T_R

+ D l(A1.B3)}l[g/_t ]T_R

+ IDID0}I [_l]

+ 1 DID2 I l[g2Lkt] IT_] 2

,_ io,,_.___r_l_?l_

+ {D1D0}2 [At}

÷ i D 1D212[g2Z_t] [T_R] 2

I_3: ID 1(A3° B1) 13[ gAt] T 1BR

+ {D I(A3" B_3)!3 [g_t]T_ R

+{D1D0} [At]
3

" ";3 L --_1
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ACCELEROMETER CALIBRATION POSITIONS 7 AND 8

¢1 = 0°

¢2 = 900

_1_: 0
Outer Axia-_ / zz'_ l'rHnnlon Axis

'" " _ ..... Rotary Axis

t

EaS' __ . _c___ __ East

o,,,,,- _ I Trunmon Axis
Axis _/ i

/ [4 -- Rot;tYv Axl>

J.
TB 1

pa
{DI(A_fB_I)}I{_: [ gAt ii} 4 = {DI(A_2.B_I)}2{+ EgAt]} pA= {DI(Aa.B_I)}3{_:

{D1(A1"B_2)}l 0 + {Dl(A2.B_2)}2 0 + {DI(A3.B2) }3

{DI(AI.B_3)}I 0 + {DI(A2"B3)}2 0 + {D,(A_3. B3)} 3

{DID0}I _At: I + {DID0} 2 L At :i + {DID0} 3

• E g2_t J + {D1D2} 2 0 + {D1D2} a{,,,=I 1

Eg At ]_

0

0

E at_

0

0

POSITIONS 9 AND i0

1 = 00

¢2 = 900

Up

Outer J

Axis - _..-/_

B2

Trunnion Axis

_---Rotary Axis

.... .._('---- -- East

Oute_lk'-e_/ I Tr'unnlon Axis

Axis _.: / _-------- Rotary
Axis

B 2

+

{DI(AI"B_I)}i 0

+ {Dl(A_1.B_3)}1 0

+ {DID0 }1 EAt?

+ {DID2 }l 0

+ { D1D3.} 1 0

_}--{.:a=.__,ll2 o

+ IDI(A_2"B2'I_± _-gAt }

+ {D,(_._)}2 o

+ {DID0} 2 L Ate'

_ t g2 . ,
+ ID1D2_2, "tl

{DI(A_3.B1)}3 0

PAl {D l(A_a..B2, }3{± i- g A t_ }

+ {DI(A_3.B3)}3 0

+ {DID0}3 EAtl,

+ ID1D2 }3 0

+ {D1D3} 3 0

I 4-43
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ACCELEROMETER CALIBRATION POSITIONS 11 AND 12

= 0 o
¢1

02 = 90 °

_t= o

Up B3

Trunnion Axis

4-----Rotary Axis

East

Outer_.__ A Trunnion Axis

Axis 1,7 ]

._----- Rotary Axis

B3

+{',::,_-4:
+ {DI(AI'B_3)Ii{+

+:_,,o},

+ DID2-} I

+ DID3} I

0

0

:g ate}

[_nti

0

0

+

D:(:4.Bp}2 0

D1(:_'_)}20

D :(_'B--3)_g

+ {DID0} 2

+ {DID2} 2

+ {DID3} 2

C At_

#:{,,(:,.__:_}_o

+ {D,:A3"B_3)}3_[ g At] }

+ {DID0} 3 [ At:

+ {D1D2 } 3 [g2 At]
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CHART4-30

ACCE LEROMETER CALIBRATION POSITION 13

oo  x,s
_2 = 900

T_ R - 0 Outer Axis_ is

pi= {DI(AfB_I)}1[._'i'/2 gAt] pi {D 1(A2.B_l)._ [_-_

+ iD1(A_1.B_2)tl[_f'1/2 gAUl + iDI(_2.B2)!2[J/2 gAt] + !DI(A3.B2)!3[_f_/2

+i,,(A,._,)}_o +{°,(_'_)i_o +{o,(_,._)},o
+ {DID0} I [At] + {DID0} 2 [At-_ +{DID0} 3 [At]

+ {DID2} , [1/2 g2At] + {DID2} 2 [1/2 g2At ] ' +{DID2} , 0

POSITION 14 .

-- - -- n up &_l_ Rotary Axis

1 = 0° '_I_

¢2 = 900

I
I

I
I

I

East

Outer Axis_

+ fD_CA__'_)!I

+ {DI(A_I'B3)}I

+ DID0} I

+ _ D1D2}, [ 1/2 g2 AtJ

+ { D1D3} 1[1/2_¢fl/2 g3At]

0

[: At]

1_2= {DI(A_2"B_I)_[_/2gAt ]

+ { D 1(_,,2"B_2)12 0

+ {D1(_2"B-3)}21 _fi/2gAt i

+ {DID0} 2 L &t_

+ {DID2} 2 0

+ {DID3} 2 0

PA= {D 1(A3"S_I)_ I_fi/2 ga t 1

+ iDI(A-3"B-2)}3 0

+ {D1(A3. _)}3 [_-1/2 ga t ]

+ {DID0} 3 FAt]

{ } [1/2 g2At]
+ D1D2 3

+ {D1D3 }3 [1/_/-1/2g3 At ]
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ACCE LEROMETER CALIBRATION POSITION 15

1 = 0°

¢2 900 Up R 1 Rotary Axis

_I_ _ _ _r_nion_
Outer Axii .-/ I

East

+ {D I(A_I'B2)}i[3_/2gA t]

+ {D I(AI.B_3)_[3/1/2g A t]

+ {DID0 }1 _At-i

+ {DID2 } 0
' " I

+ {DID3} I 0

A

P2 = {DI(_2"BI)}2 0

+ {D I(A2"B2)}2[_/i/2g A t ]

+ {DI(A2"B3)}2[_JI/2gAt]

+ {D1D0} 2 LAt]

+ {DID2} 2 E l_g2At_

+{',(_-3"_)}31_/2g_t1

+{,I(A3._)}31(V2g_t1

+{,po}3 E_t3

{Dp_}3Ei/2g2_t7

+ {DID3}3[1/2 3/_2g3Atl
]
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4.3 CALIBRATION EQUATIONS

We noted in Section 4.2 that the simultaneous solution of at most two equations would yield

the value of a required calibration constant as a function of the input environment and the
A-

defined P_ or P_ vectors. The P_ and P_ vectors were seen in Section 4.1to be a func-

tion of the instrument outputs, noise, and quantization error. In the first subsection which

follows we will approximate the PGk and PAk vectors by the instrument outputs only. Those

approximations will be incorporated into the determination of the calibration computations,

which are tabulated in Section 4.3.2.

4.3. I Processing

We showed in Section 4.2 that each calibration constant can be solved for as a function of

at most two input environments, two pA kGk or two P components, and previously determined

constants. That is, the solution for any constant (say y) can be written as:

where

A_

y = Ax+ B

x=l__t_=_t)°r LAt

1

environment coefficient of y

p=PAk or PGk fork = I, 2, or 3

B = function of other calibration constants and environment
inputs.

In Section 4. 1 we defined the P vectors as a function of instrument readout, quantization

error, and noise. We suggested in the introduction to Section 4 that we wish to approxi-

mate the P vectors as functions of instrument readouts only. We would like therefore to

collect the instrument data in such a way that the effects of quantization and noise fall be-

low some required threshold. Fortunately the noise can be represented by random pro-

cesses with bounded means and variances. The quantization error is by its very nature

also bounded. On the other hand, for a nominally constant input environment, the instru-

ment out£_ut is a monotone increasing function of the observation time. Thus by choosing

sufficiently long observation intervals, the percent error in the assumption that the instru-

ment output equals P can be made arbitrarily small.

4-47



I

I

I

I
I

I

I
I
I

I
I

I

I
I

I

I

I

In Section 2 of the trade-off document the analysis which leads to the above conclusions is

presented. The results of that analysis are presented in form of graphs in which the

precisions of the calibration constants (with the assumption of neglected noise and quanti-
G

P_) plotted against time. Those graphs will be used in the Laboratoryzation in Pk or are

Procedures Manual to determine the calibration time required to obtain a desired precision

in any constant.

4.3.2 Computation of Constants

With the approximations described in the previous section, it is now possible to solve

explicitly for the calibration constants in terms of well-known instrument and environment

measurements. The equations are presented in tabular form on the Calibration Equations

Charts. These equations are those which are to be programmed. An exception is the

J term equations which will not be in program form until the time when the test table is

evaluated (see Section 4.2.4).

It has been noted in Section 4.2.5 that the accelerometer third order term cannot be

separated from the scale factor by a choice of positions. In the following set of equations

there are two equations given for each accelerometer that relate the scale factor term

[DI(Ai" Bi)_i to the third order term (D1D3) i. If a simultaneous solution of the two equa-
tions is used to determine the scale factor and the third order term, then the scale factor

will be sensitive to errors in the bias and the second order term. These terms appear on

the equation listed second in each of the three sets of two equations. This may be avoided

by determining (DiD3)i(_y simultaneous solutionor other methods) and using thisvalue to

solve the firstequationfor _DI(Ai'Bi):i. This value is subjectto the accuracy of other

terms only through the extremely small term containingD 3. (DI) is then given by the square

root of the sum of the squares of [r_,lxlAi.Bj)_ifor j = I, 2, 3.

In developing these equations several equalities are used which introduce previously un-

mentioned parameters. The following comments describe those parameters and their

no menc lature :

Because we are dealing with the measurement of quantities in many different
positions, a position index must be introduced. The numerical superscripts in
all equations refer to the positions.

The vector pG (k = 1, 2, 3) is approximated by the gyro readouts, therefore

pG => (ZS) kk
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GYRO CALIBRATION EQUATIONS

Scale Factor and Misalignments

i_¢:k = I L"'_'---"_k + L _m ]k

Gyro One

(z3nT) 1 (EnT) 2

[ (GI. B I),/L_':I']I =

I LFs0('_°>'+_ _n:)l (_ nT)V(sn_)---_2_-2sT _Esin x]

L__<_,_j

I k k (]Bn_)3 + (_1)4/- 2sT_Esin k]

iI r_o>t_o>t
I L<=@-_ <=@°

(G_i. B3),"A_]i =

I [S¢_-_n¢)5.?L.n-_(_1)6}(_n¢)6_-2ST .Esin k]

I Gyro Two

I

I

I

I

-(G_2" B1)/_¢] 2 =



)

|
|

I
|

|

|
I

|
I

I

|
|

|
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GYRO CALIBRATION EQUATIONS (Continued)

' G yro Three (Continued)

[ _(_nT) 5 (_nT)---_]

I Bia___._s _R-- k = _,R,/_'c__k [ _'_k

Gyro One

[bn 111 .]

I ._E sink [171BR5[ (G_I" BI)/'_'-I * T_ R5 _(GI° B-2)/A_}I]

I
I

I

Gyro Two

-_ sin k [T_RI [(G_2"B2),'Ac}_2 +

!

I

I

I

[R/A¢: 3

Gyro Thre}

E iT BRI [(G_3. B3)'a_: 3-_ sin k 32

7

TBRI [(G_3"B2)/A_3 ]22
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GYRO CALIBRATION EQUATIONS (Continued)

[B'_ k = (.B/A¢-_ k :.A¢_k

LC_ 1'_ _ G121

(Qi"B-3)/4¢i1

_.Bs/A@_ I = 2gSI _ ,... T,G9 _ T,GI0 I

. _ :(92.B2)/_¢_:2

2gS 1_ _;n 1/2

_Bo/_e3 2

I _)_ _)_ -_ _cEc°s xi _ - _ "(G2"B-_)'_¢-2

. . _ L --2 --

12J
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GYF_O CALIBRATION EQUATIONS (Continued)

_Ecos X

1 _i -

sBs/_ss_2_s_ _s _s j

_Scos x [.(o3. st)/,xe_s

g

_Eeos X

_C_k

I i+ 2

CI Ae_ 1 = T 01

.,_BBI [. (131. s3)tAe"]l_

_sinx _.TBI:U _.tO_."B__)ia'_3_ + _'3_ -.i

2
6
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GYRO CALIBRATION EQUATIONS (Continued)

Gyro Two

.... - __ [..R/,A,_L 2
[CII/A']2=2g SiLiSnl) 2 (_ni)2 I] g2 T T G9 T G10 2

J sin X

g2 L - -

I "Css/Ae;;2 2g2sT _ T, Gil + _ I "--CR/A¢:2
_,n 1)2 ,_ T.GI21 2(_n 1)2 -j g

i _Esin X

g2 [T_2R5 _(G2. B1)'/A¢_2 + TB2R5 [(G2° B2)/A¢:2]

i

I

i

I

Gyro Three

1

CII/A_'_ 3 -

292S_

-_' _ 1
($n_)G1, *..'-T,G12 I --_(LYI1)3 j

_R:'A¢_': 3

[TBR5 _(G3. B_1) Ae- 3 + TB% 5 :(G3_ B2)_r-31

I

I

!

CSs:A_'3 = 292S----_ "_--"_G9_sn,)3 +.]-{-,_,Gio, -_2 ;-R"_'¢:3(Sn 1)3 j

g2 - -

I
I
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GYRO CALIBRATION EQUATIONS (Continued)

Gyro One

_'J [[01. B1/'A__ 1 [,,/_"2"

g2

2 _{ ,]+-- [R/A¢_ 1 +-- [BI/A¢] 1 - [Bs/_¢:

g2 g

cosk + TB_ 13 sin X] + L(GI' B2)/A¢] 1

I z _ .CSS/A¢_I+ '_CIyAq'_l + _

+ [__l
'CI(_' _-l= g2S---_ _2JnT)714j "g"2 _R/_¢:I

g2

I
I _o_,,oo:,:2 F_<_l" 2 T TGI5

g S1 L_nl)l j g2

g

I

I

+ T_#14sin _,] + _C,1"B2/'A¢] 1

- {_CII/A¢]I

2 V_-F ,

g

g2

(.4_2-COS k + TB#15sin X)+ LG_i. B3./A¢__ $ _Li'-_2 COS_, + T3B_15sin).]]

I + ,:Css/_a__11

I

I 4-55

I



I

GYRO CALIBRATION EQUATIONS (Continued)

Gyro Two

..... +--_R., ¢_2+-- BI/Z_¢,_ 2 - [Bs/ZXO_ 2

2 ,-fl

g +--2 i LG2" BI'/A_:2 [TBR15sin X]+ _G 2- B2/A¢_ 2
g

I [ 1_i7/2 cos k+ TB2R15sin ;,] +_'G 2" B3/Z_cP_ 2 [_7"2 cos X+ _BR15sin X]I

I + - CII./A¢_ 2 + [Css/A¢]2

2F °e1

BI/ ¢_2

I = ] I(_)_4 I+ 2

I _Cos/A¢'_2 g2ST L'_nT)G------I_ g2

2_
+m

' ¢_ +'7 :-Ss/a<2_R,,' A. _2

[:G 2. B1/A._] 2 _1_/17-/2cosk+ T_ R14sin k]

+ _G 2- B3/A_ 2

+ :G_2. B2/A¢] 2

I [T_ R14sin XI+ [G_2" B_3/A¢: 2 I1_/'2 COS;k+ T3B2R14sin XI]

I + _-Css/_]2
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I GYRO CALIBRATION EQUATIONS (Continued)

Gyro Three

_ 2'_E I[G3" B1/_¢7 3 [TBR15sin }`l + FG_3" B2/_¢'I 3
I g2 - J -

I [_-7-2 cos X+ TB2R15sin x] +/G 3- B3/A_] 3 _ cos},+ T_R15sin },]]

I _ [CII/A¢]3 - [Css/A_]3

2 F_441 _, ,_
I [CIo/_]3 = _-T / -_--l-- [R/AS]3 --- [[BI/A¢]3

. - T G14 2
g siL(_i)341g g

I

I
2_B I_:G_3. B1/'_ 3 [I'_/2

g2 - -

cos X+ TB2R14sin _] + [G 3. B2/A¢] 3

BRI4
[T22 sin X]

2 2 4/

I OS/A¢:3 g 2ST _ - g-2 [ R/A@:3--- [:Bs/Aq_]3L(ml)3 g

+ ,'-G_3"_B3/A_] 3 [1_/2 COS},+ T_R14sin X]]

+EBoJ_<j

2_E JIG_3" B1/A_: 3 [_/_/2 COS},+ T_13sin k] + FG_3. B2/A¢] 3

-[cn/a¢] 3

I co,,T_R13sin }`] [G3. B3/A_"' 3 -BRI3 " XIf _ 7+ + _ _ _ [T32 sin -[Css/ @J3
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GYRO CALIBRATION EQUATIONS (Continued)

J Term

[J]k

[j/A_] 1

= [J/A_]k [A¢] k

Gyro One

(P?)
- [R/A@] I

At

Ao_ T

Atg

- EB0/a¢] 1
Aw T

A_ 2

Aco T

- [GI"B1/A¢] 1 [Tl_ 5f sin¢2dt + f c°s¢2dt]
-- AT

I

I

!

I

I

I

I

I

I

[ J/A¢] 2

Gyro Two

pG At Atg

- [ R/A_] 2 r.-. /,,._.1_ LD0/"_J 2
Au_ T A_ T Aa_ T

A¢ 2

A_ T

[-w E sin k-]
G2" B2/A¢_2 | q ITSelf sin¢2 dt

L a_ T ]
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GYRO CALIBRATION EQUATIONS (Continued)

Gyro Three

[ j/A¢]3 -

pG At Atg

[R/A¢] 3 -- _ [Bo/A¢] 3
A_ T A_ T Au_T

A¢ 2

- [%-B_ja¢]3
A_oT

E sink [132 J sin¢2dt + T_I _ c°s¢2dt]
_E%.B__/_3L _ _BR_

if _T = const=K

(0 )o_o o

Then

(--_(W_A¢G I R Bog Gk'Be 1

/ TBR\7

¢_E sinkKAt At0 C°S[_ _t2- tan- l(---_BR/Idt\Tk3 JJ
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ACCELEROMETER CALIBRATION EQUATIONS

I Scale Fac____tor an___d.Cubi______cTerm

Accelerom_ eter On__._e

I 1 V(Z')_2 (_)71 (Z;'v)_2

I [DI(AI" B-1)]I + g2[D1D3_I = - T _ _--_-,A72gS 1 L(_nl)12 _n 1)11 tzm'_T,A81)1 2

I _DI(A_I'B1)]I+2_D1D3]I =_------ (_7)_3 _7"3 -
T T A13 T A13

gS 1 L(_n i)12 (L'ni)11

| _

I

I
I

--- LD1D2 ] 1
2

Accelerometer Two

[D1 (A2" B2) ]2 + g2[D1D3 ]2 -

J_
_DI(A 1"B_2)]1 --- [DID0] 1

g

2gS T L t'_ ,- 2:,A10 + (_nl)21 3]i,_ni)22 ,,-.T,A9 T AI0t_n 1121 t_n 1)22

I B2)--2+]_D1D312 =--gS_ I_ T,A13 ,,-T-_A_3 I
L_bn1)22 v,n 1)21 ]

I -g [D1D0:2 --_- LDID2:2

:DI(A2" B-l)]2

I

I [D1 (A3" B3) ]3 + g2 LD1D 3 [3

Accelerometer Three

2_s_.:_,_11-_h(_n 1)32 ,_ T,A11t_n 1)31
-,_ T,A1-------2+_';_,A12,

t_n 1)32 _n 1J31 _J

I g2 _ F (Z;_)_ 4

_.DI (A 3 •

B3)]3+2_D1D3;3 gS T _ T,A14

I z_n 1)32
J2g
-_ LD1D2 ] 3
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ACCELEROMETER CALIBRATION EQUATIONS (Continued)

Bias and Second Order Term

Accelerometer One

1 V (:_?')9 2 (Y//)91 (Z'Y)_ 0 (Z;_/)_0 1
:-DID0)1 = _ ._---_Ag- ,--T,A--''_9+

2Sl'(_n:)12L ,oT,AIO_.--7_,A_Olt_n i)ii (_n iI12 t_n i)iI ._]

__LI(_)::-(:_)::
L(_niJi22ST_ '._--"_A,All ,,.,T,All:_n i)ii

+ I_nT,AI2 -,,-.T,A12 i
_: i)12 (_nl)11 j

1

CDID2:1 -- _DID01 l-
+g2

F (_7)712 (_?')111

292S: | _--_-A,A7 (En:)A7L (L-_1)12

(_)_2 (__)_1]
(_4),_(::,):,'J

_D1D0- 2

1

LD1D2::2 +- _.D1D0:2 =
g2

Accelerometer Two

F (B7)_1

_-_:|
2S: L(L-'n:)2A_ - T,A7(_n 1 _21

L:Zml)22

(_)8 2 (E_)811
:-71,A8

(Bn:)2A28 (_n 1)21_

(_ T,AI1
nl)21

1 F(:_)92(:_)91
!

2g2S: T A9_n 1)22 _ T,A9(zm 1)21
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ACCELEROMETER CALIBRATION EQUATIONS (Continued)

Accelerometer Three

- + ,_ _I,A8" (_nT)A8 1
T A7 Iz_n5)32 5 35 J_z_n1;35L(l_ni)32 ,_ T,A7

/.-._,.,10 "1

_ + - C_/AS-------_I
= _ _n 5;35 tz_n1)32 1 35 _]

I I=__- - _ +T T.A12"-- T,A_]
+ g2 _n i) 32 (:Dn i;31 (L'n I)32

I _DsD2-13 -- _DsD0":3 2g2sT|_ T,AI5 _ T,AII (I;ni,35 .J

MisalignmentsI
,.+.

- _z_nI)11 O
I _Ds(A I. B2)_ 5 = 2gsT T A0 L_nl,12

!
= " " (_--_)AI2 + ,-_I,A52 1

T " T ASI- - - (L_5)55 5 522gS I _n i)52 _ T_ASI _z_n1)55 ]

Accelerometer One

I Accelerometer Two + (Z;_)825 1

I ._DI(A2. BI):2 = 2gSl _.Enl)22 (L_ni)25 T.A8 (EnT)A8 1
q: , T A7 _fA7_ (_n i)22 1 21.J

I

I I ,- T,AIi ,_ _,Ail ,- _'AI_' gl)

" L _Ln 1;22 £1_n1)25 _bn 1)22

I
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ACCELEROMETER CALIBRATION EQUATIONS (Continued)

Accelerometer Three

D_(A3.BI);3 2gS_ ,Z-_,A7 ,_ T,A7 -- + _--_,A8m(En i)32 ,_ T,A8(_,n i)31 (L,n 1)32 (L-'n i)31 ]

[DI(A_3 ° B2)] 3 =
1 F (T_')92 (_39')91 (_3,,/)_0 (_,y)_0 l

2_s'__--_,_9__,_ __,_o+ :-_,AlO,m(Enl)32 (_nl/31 (Zml132 (_nll31 _J
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where (r,6)v corresponds to the pulse count from the kth gyro over the total
time of data'collection.

The vector pA (k = 1, 2, 3) is approximated by the accelerometer readouts,
therefore

PAk :> C_V)k2 -_V)kl

where _V)k2 and _V)k 1 correspond to the pulse counts from the second and
first string of the kth accelerometer, respectively.

The total time of data collecting will be recorded as a count (_ n_) from the
system clock, therefore

_t => ST (r'nT)

Where STis the scale factor of the system clock. The subscript 1 serves to
distinguish the clock pulse train used in calibration from the pulse train used in
the Preprocessing computations.

The total test table angle (&¢2) will be recorded as a number of _flole turns
(or a number of fractions of w-hole turns), therefore

4¢ 2 => S ¢ (_n ¢)

where (_n ¢) is the number of increments of angular displacement; and S¢ is
the scale factor which converts the number of increments to a finite angle.

In Section 3.3 we presented a description of the laboratory facility with all of its measure-

ment and computational devices. In Figure 3-6 we showed the possible equipment interfaces.

For the purpose of calibration all instrument data collections will be accomplished with

the frequency counters shown in Figure 3-6. (See Section 2.1 of the trade-off document

for the reason why the counters are used.) The specific employment of the counters for

all positions is described in the Laboratory Procedures Manual in the sections entitled

Fundamental Modes. Also found in the Fundamental Modes sections are all events in the

collections, transfers, and computations during calibration in the form of flow diagrams

accompanied by descriptions of the activities.

4.4 PRECALIBRATION REQUIREMENTS

The required constants contained within the equations tabulated in Section 4.3 were pre-

sented as functions of instrument outputs and parameters describing the environment inputs.

Before the data can be collected which is necessary as inputs into the equations, several

initial survey tasks must be accomplished.
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The environment selections were presented in Section 4.2 as choices of the ¢1
and ¢2 gimbal angles and the first column of the T BR matrix. The test table
orientation is, however, controlled by choices of four gimbal angles; therefore,
the choices of the first column of TBR must be expressed in terms of the gimbal

angles, which we know from Section 3 to be ¢3 and ¢4"

The T BR matrix is a function of the T BI matrix as well as the ¢3 and ¢4 gimbal
angles. We raust, therefore, determine T BI before we can equate the first

column of TBR to ¢3 and ¢4"

The gyro bias and compliance constants are seen (see Section 4.3.2) to be a
function of (among other things) the second column of the TBR matrix. That
column can be determined (once TBI, ¢3' and ¢4 are known) by a use of equalities
presented in Section 3.

In all previous developments it was assumed that T FE (the transformation between
the test table base frame and the earth frame) was equal to the identity matrix.
In the operational laboratory this matrix will deviate (by small numbers) from the
identity matrix. It is, however, possible to correct for the deviation by the use
of bubble levels.

In the following subsections we present the manner in which all of the above tasks are ac-

complished. The order of presentation is the chronological order in which these tasks

should be accomplished in the laboratory.

4.4.1 TBISurvey

The initial activity subsequent to the attachment of the ISU to the test table is the determi-

nation of the orientation of the ISU body axes relative to the test table frames. This cor-

responds to the evaluation of the T BI matrix (see Section 3.2.1). In Chart 4-32 we see how

this is accomplished.

In Chart 4-32 we refer to the test table orientation used in the determination of T BI as

Position Zero. Position Zero can be any orientation; but the zero orientation shown in

Figure 3-2 might be the most convenient for it results in

(TIO TOR TRT TTF TFE)-1 = I (the identity matrix)

(The matrix product T BS T SE = T BE is functionally equal to the Mirror Alignment Matrix

shown in Chart 2-6. As mentioned in the discussion of the Mirror Alignment Matrix is

Section 3.1.2 the particular evaluation of this matrix depends upon the particular geometric

angles which are outputted from the autocollimators. At the time that the form of those

outputs are known, the exact form of TBS T SE can easily be determined.)

The T BI Survey activity is formalized as a "Precalibration" activity in the Laboratory

Procedures Manual. it Will most probably be accump,l_neu vel"y near ule tlnic tllett 1.1112

ISU is placed on the test table. It will probably not be necessary to repeat this survey

except when the ISU is removed from the table and then "rebolted" in another orientation.
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CHART 4-32
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Given:

Find:

I.

T BI Determination

a set of resolver readings ¢0, ¢_, 00, and 00 from position zero and the

transformation from body to earth axes via autocollimator readings

(WBS0 T SE0)

the matrix T BI which transforms from the body axes to the axes fixed

to the inner gimbal of the test table.

From the laboratory geometry definitions described in Section 3 we have:

_i (_o_s_0)(_IO0_O_0_0_0_).
where TBSOT SE0 is given oy the autocollimators and

TIO0

I 0 1 0 ]

= cos C0 0 -sine 0

L_si n ¢0 0 -cos 00

TOR0 I ]
0 1 0

= cos_0 0 -sin_ °

L_si n ¢0 0 -cos ¢0

I 0 1 0TRT0 = cos C0 0 -sin_ 0

L_si n ¢0 0 -cos ¢0

0 1 0_o cosooo -s_nO0

L_s_n_0 o _cos_0

W .L" J..J

r 1 o 0 ]

=Lo oj0 0 1
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4.4.2 Test Table Resolver Settings

The calibration selections in Section 4.2 were accomplished by dictating values for ¢1,

¢2 and the first column of the T BR matrix. In implementing those selections it is neces,

sary to equate the T BR choices to the controllable ¢3 and ¢4 gimbal angles. In Chart 4-33

we see the functional relationship between the first column of T BR and ¢3 and ¢4 (and T BI

which is known from the procedures developed in Section 4.4.1).

In Chart 4-34 we present the ¢1' ¢2' ¢3' and ¢4 settings for all fifteen calibration positions.

Included in that chart are the equations for the determination of ¢3 and ¢4 from the choices
of the first column of T BR. Those equations are special cases of the arithmetic contained

in Chart 4-33 for Positions 1, 3, 5, 13, 14, and 15. A duplicate of Chart 4-34 is presented

in the Laboratory Procedures Manual. The numerical solutions for ¢3 and ¢4 must be ac-

complished and placed in the chart before calibration can be accomplished.

4.4. 3 T BRm Determination

The gyro bias and compliance computations presented in Section 4.3 are functions of

(among other things) the second column of the T BR matrix for Positions 1, 3, 5, 13, 14,

and 15. The T BR matrix is a function of ¢3 and ¢4 (see Section 3.2). The gimbal angles

¢3 and ¢4 are known by the use of the computations presented in Chart 4-33. In Chart

4-35 we present the computations which develop the required second column of T BR from

t.he known ¢3 and 04 andgles (and T BI as given by the computations presented in Chart 4-32).

Although not required for calibration purposes, the computations of the third column of

the T BR matrix are presented for information purposes in Chart 4-35. The first column

of T BR is known because it was utilized as the environment selection control parameter.

4.4.4 Bubble Level Corrections

Throughout the development of the calibration techniques it was assumed that the test table

base frame is aligned with the earth axes, that is:

T FE = I (the identity matrix).

In practice this matrix will deviate from identity, due to such things as solar heating of

the vuilding and settling of the building. The resultant low frequency motion of the base

ruL,ttlve to me earLh can be uurru(;L_u U,1,m_ul,ttu,y u_ur_ ca_mraL_uzz data cu_Lectmn)......... uy

the use of buble levels. There are three ways in which the corrections can be implemented.
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CHART 4-33
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Given:

Find:

la

_ _ Equations

T BI, TB_ m, T BRm, T3BRm

We know that

T BRm = T BI TIOm TORm

or (TBI)TT BRm- T IOm T ORm

where T BI is given from a prior survey and

TIOmT ORm =

m

cos ¢_n 0

m m
sin ¢_ sin _4 cos ¢4

sin _cos _ -sin _

m

-sin ¢_

co_0?s_._

cos_?co__

2. Solving for the first column of TIOmT ORm we have

BI T1B1Rm BI T_Rm BI T_Rmcos ¢_a = T11 + T21 + T31

sin ¢_ sin ¢_

sin _a cos ¢_

BI TB1Rm BI TBRm BI T_IRm=T12 + T22 21 + T32

= T13 -1 + T23 + T33

which gives the desired functional relationships.
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CHART 4-35
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Given:

Find:

1.

1

J

.

T BRm Determination

¢_a, ¢_, and T BI

TBRm

We know that

T BRm = TBITIOmTORm

where T BI is given from a prior survey and

TIOmT ORm =

cos_ 0 sin _
m

sin ¢_a sin ¢_ cos ¢4 cos ¢_a sin ¢_

s_n07co_0_ s_n_ co__?co_

The first column of T BRm is the calibration control parameter. The values of

this column have already been included in the calibration equations.

The second column of T BRm which is the only column required for inclusion into
the calibration equations, is:

T BRm BI BI= TI2 COS ¢_ - TI3 sin ¢_

T_m BI= T22

TB2Rm BI= T32

BI
cos ¢_- T23 sin ¢_

BI
cos ¢_- T33 sin ¢_

These equations need only be solved
for m= 1, 3, 5, 13, 14, and 15.

The third column of T BRm, which is no__ttrequired in the calibration equations, is
given for information:

TB_m = _TllBI sin cm+ T12BI cos ¢_a sin ¢_a+ TBI cos ¢_a cos ¢_

T _ m BI BI BI= -T21 sin ¢_n + T22 cos ¢_n sin ¢_ + T23

T_3Rm BI BI BI= -T31 sin ¢_a + T32 cos ¢_a sin ¢_ + T33

cos ®_ cos _

m
cos ¢_a cos ¢4
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Whether accomplishing a complete or partial calibration, the above four activities occur

in the order presented. In the following paragraphs we will briefly describe each activity:

Turn-On

These activities include all of the various housekeeping tasks which include such things as:

• Power-on to equipment

• Monitor equipment operation

The detailed specifications of these activities cannot be tabulated until the laboratory facility

is completely defined. In the Laboratory Procedures Manual a space has been allocated

in Part I for inclusion of the details of turn-on to be specified at the time when the labora-

tory is configured.

P recalibration

At some time, between the placement of the ISU on the test table and the initiation of cali-

bration, the following system survey activities must be accomplished:

Determine TBI

Find ¢3 and ¢4 for all calibration positions

Find the second column of the TBR matrix for all calibration positions

Store g, _E, _, ST ' andS. ¢

The first activity locates the ISU relative to the test table. The second activity determines

the inner and outer test table gimbal angles settings for all calibration positions. These

settings were shown in Section 4.4.2 to be a function of the T BI matrix. The third pre-

calibration activity computes the second column of the T BR matrix, which was shown in

Section 4.3.2 to be necessary for computing the gyro bias and compliance terms. The

fourth activity records system numbers required in the calibration equations. All of these

activities are described in detail in Part I of the Laboratory Procedures Manual.

Calibration

At any time subsequent to the completion of the Turn-on and Precalibration activities, the

ISU can be calibrated. We formally define the calibration activities as the completion of

the following list of activities for any or all positions:
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• Connect instruments to frequency counters

• Set frequency counters

• Set test table resolvers with bubble level corrections

• Set table speed

, Collect data

• Transfer data to computer.

A complete ca:ibration would accomplish the above activities for all positions. The order

of positions is completely arbitrary; but the packages of six (1 to 6 and 7 to 12) will proba-

bly be accomplished in numerical order. A partial calibration need only accomplish these

tasks for positions required for the determination of the required constants. The details

of the above activities are found in Part II of the Laboratory Procedures Manual°

Computation

Computation is very simply the solution of any or all of the equations in Section 4.3.2. A

complete calibration requires all computations and a partial calibration would require the

solution of only a few of the equations in Section 4.3.2. The details of the computation

procedures are described in Section II-4 of the Laboratory Procedures Manual.

4-73



D
SECTION.5

DEVELOPMENTOFAL IGNMENTTECHNIQUES

In Section 2 alignment was defined as the initialization of the matrix which transforms from

an ISU-fixed set of axes to a navigational set of axes. The ISU axes were defined by use of

two mirror normals and the navigation axes were defined as an earth-fixed, local-level

frame. Transformation of this alignment problem to any other alignment problem using

different ISU and navigational frames is then a simple problem of coordinate transformation.

The discussion in Section 2 revealed that alignment could be accomplished by measurement,

in body and/or earth-frame, of the components of two system vectors. Three different

choices of these vectors lead to the three alignment techniques: Mirror Alignment, Level

Alignment, and Gyrocompass.

Further analyses in Sections 2 and 3 lead to the functional description of the three alignment

techniques shown in Chart 5-1. In this description each technique is further broken down

into four basic types of computational routines. These are:

• Preprocessing Computations

• E stimation Routine

• Estimation Matrix Computations

• Alignment Matrix Computations.

These routines have as inputs certain a priori information, calibration constants, instru-

ment outputs, and/or outputs from other routines as indicated in Chart 5-1.

Before beginning the detailed development of alignment it is important to note several points

which dictate the viewpoint adopted in the remainder of this section. First note that there

are basically three types of routines indicated in Chart 5-1. They are Preprocessing,

Estimation (including both Estimation Routine and E stimation Matrix Computations), and

Alignment Matrix routines. The mathematics of the Preprocessing Routine was developed

in subsection 2.2.5 and will be considered only briefly here (in Section 5.1). The Alignment

Matrix routine uses estimated values of g'_k and mirror azimuth (Level Alignment) or

_E._l_ (Gyrocompass) to initialize the alignment matrix T. This relativelyg. Bk and

straightforward w_thematical problem b_s been discussed in Section 2 and is considered

again rather brieflyin Section 5.5. The remaining routine, Estimation, is the major sub-

jectof discussion inthis section. Before developing various estimation techniques, the
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ALIGNMENT FUNCTIONAL DIAGRAMS
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environment and sensor noises are modelled in Section 5.2. Then in Section 5.3 and 5.4

specific estimation techniques are developed under different assumptions. The explicit

equations for the recommended alignment techniques are summarized in Section 5.6.

Second, it should be noted that there is no detailed discussion of Mirror Alignment since

this section emphasizes estimation which is not relevant to the mirror alignment problem.

The Alignment Matrix Calculation discussion of Section 5.5 is, of course, applicable to the

mirror approach when mirror azimuth and zenith angles are given°

Third, the reader should be forewarned ofthe emphasis on Level Alignment over Gyro-

compass in this section. It was found, not unexpectedly, that the alignment errors in

Gyrocompass may easily be two orders of magnitude larger than those expected in Level

Alignment. This is, of course, mainly due to the low signal-to-noise ratio of the earth-

rate signal in gyro quantization noise. Further details of this comparison of Level Align-

ment versus Gyrocompass are given in Section 5 of the trade-off document (Volume 2)

where a Monte Carlo simulation of an alignment problem is used to obtain quantitative

re sults.

Finally note that Section 5 of the trade-off document justifies many of the comments included

below. Section 5 of Volume 2 includes further discussion of the assumptions required and

the results of a simulation of the proposed estimation techniques. It is important to note

that in several places important assumptions have been made with little justification when

the data was not available to include completely realistic values. The collection of ac-

curate data about the noise environment is a very difficult and e.x-pensive problem° 1low-

ever, all results of this study have been presented in such a manner that when more ac-

curate data is available, modifications can easily be made.

5.1 PREPROCESSING COMPUTATIONS

The Preprocessing Computations yield integrals of angular velocity and acceleration in the

body frame :

t+ At t+ At

j' __.B_jdt _ a.Bjdt , j = 1, 2, 3.
t t
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The inputs to the computations are the counter outputs (BY)k2 , (EV)kl' (ES)k' and (En 2 ),

k = 1,2,3. The calibration constants for each sensor are required, along with the trans-

formations from the sensor axes to body axes QA, QG. The notation is definea in Section

2. The preprocessing equations are developed in subsection 2.2.5. They are reproduced

in Chart 5-2. In this chart, dots at the left hand margin indicate the alternative computa-

tions used for Level Alignment or for Gyrocompass. Note that At was assumed to be

small in the development of the equations in Section 2.2.5. This restriction is not required

in the Preprocessing Computations used in alignment since the ISU is relatively stationary.

5.2 ENVIRONMENT AND SENSOR NOISE MODE LS

Before developing processing techniques, we must describe the effect on sensor outputs of

various random inputs: environment translational acceleration and rotation, accelerometer

noise, and gyro noise. This section is a continuation of Section 3.2.2 which describes the

general characteristics of the environment noise. In the development of estimation tech-

niques, quantization errors are not included. Several of the resulting techniques are tested

with a Monte Carlo simulation to determine the effect of quantization, computer word length,

and anomalous noise inputs. The results are presented in Section 5 of the trade-off docu-

ment. In the following paragraphs, we first describe the environmental components of the

sensor inputs (5.2.1) and subsequently describe their effects on the observed sensor out-

puts (5.2.2).

5.2.1 Sensor Input Acceleration and Angular Velocity

It is convenient to define a "level frame" that moves with the ISU and whose average orien-

tation is collinear with the earth axes, as indicated in Figure 5-1. The body axes are fixed

relative to the level axes. If there were no environment disturbance, the level frame would

coincide with the earth frame.

Let aLk be the acceleration of the level frame along L k. Then

a L = aL2 = gU" -_2 +_2

aL3 gU" L 3 + _ 3
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PREPROCESSING COMPUTATIONS
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inputs(_)k2,(_)kl, (_6)k,and(=_)for k --1, 2, 3

The outputs Jt_t+At (¢¢.Bk)dt__ and I'tt+At (a.Bk)dt_ _ (k = 1, 2, 3) are given by the following

computations:

Level G...CC

A _:[(E)_)k2 (ET)kl_• • Pk -

• PGk _ (_6)k

. . _ts_(_4)
• L(_.(3k)_t" z pG(A4_)k- (R)k_t

• * [(a.Ak) At" _- PA/(D1) k - (Do) k At

• (_'.G k) -: E(_.Gk) At j/at

• • (a. A_k) -: [ (a o Ak) atT/at

• (a.G_k) --- (a. A_k)

Ii _lr'_• _a_: o o_|(_ I
o oj L(a=__3)j

o 1 olt(_,)_
• : o (__--:_A_2)

• , o'tt+At(_.G_k)dt =

• . 't+At(a.Ak)dt =

• _ t+At(_-.B1.)dt =
"t

• • stt+&t(a. _Bk)dt =

where

• QG = -2" B-l)

_3" B1 )

I 1

• QA = _(A2 oB1)

[__3" B1)

: (_.Gk)At ]-_(Bi)k(a.Gk)+ (Bo)k(i.O_k), (Bs)k(_aoS_k) :At

(Cii)k(a_-_k)2 + (Css) k (a. Sk)2 _ at

L(Cis)k(a. G_k)(a.Sk) + (Cos)k(a. Ok)(a. Sk) + (Cio)k(a.Gk)(a.Ok) :At

[ (Qii)k(_) 2 + (QIs)k(_)(__"__ k) "At

'_-(_a. Ak)At: - (D2)k(_a-:A_k)2At - (D3) k (_a. Ak)3At

E G t*At(_. G,)dt
Qk,_ _t - -

E, QkLA t+At(a.A__)dtt

-(G I"_B 2) -(G 1"B3-_

1 _(o21_-(G 3 • B_2)

-_-1"_2 j -_-l'P3 jl

- (a_3o_2)
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Figure 5-1. Level Frame
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where al' a2' a3 are the environment-induced accelerations along L1, L2, L 3. The

expected value of aj is zero. To first order, L 1.U = 1 since the rotation from vertical

is the order of one minute of arc or less. Further, U. L 2 and U- L 3 can be represented

as small rotations about L 3 and L2, respectively. Let e 3 = -U.L 2 and 0 2 = U.L 3.
Then, to first order,

a L

g + al 1

= gO3 + a2

g02 + a3

Further, the angles O2 and 0 3 have zero expectations. Let T 1 be the orthogonal trans-

formation from the level frame to the body frame. Then the acceleration in the body frame

a B is

aB = TIa_L = T I + T 1 -g8 + T1 2

Lg%J L 3J

The first term is the average gravitational acceleration in the body frame. The second

term is the variation of the acceleration due to level frame rotation. The last term is

the environmental acceleration disturbance. The power spectra of i' a2' a3' 02' 03
cainbe obtained from environmental test measurements.

Next, consider the angular velocity. Let 00Lk be the angular velocity of the level frame

about Lk. Then

_L

it-_CLl ]
I

= cei_

_ _L3J

_Eu._Li

: _Eu.L 2

_Eu "L 3

+ ,_EN-L1 + 8 1

+ _NEN.L2 + 82

+ _EN.L 3 + 83

where w E U + _0EN is the angular velocity of the earth and 8 k is the environment-

induced angular velocity about L k. To first order, U.L 1 = N.L 3 = 1. Further assume

that there is no rotation about U and hence 8 l=0 and N.L 2 =0. Also, 8 2 =_2, 83 =_3,

and N.L 1 =0 2 . Hence,
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i -- E E --
w U - _N02

.E8 + "
_L = -°;U 3 _2
- E E •

L _U02 + _N + 83 _

-E - E I -i 1
I _ :_1o/ __1-_1+_,.q

where w B is the angu ar velocity in the body frame, h 'e

I tions analogous to the corresponding terms in a B.

Since the system has been calibrate¢, the transforma ,n r(

axes is known. Let T 2 transform a B to the acceler _e _r

ccB to the gyro input axes. Let

aA = T 2 a B

I and -_G = T3-_B

I These vectors represent the sensor inputs.

There are two alternatives in estimating gravity and angular velocity.

I estimate the average components in the body frame:

I _/o/ _o__,o/
I _ _J

These three terms have interpreta-

Since the system has been calibrated, the transformation from body axes to sensor input

to the accelerometer input axes; let T 3 transform

First, we can

(5-_)

I

I

I

Second, we can estimate the components at some time t* in the future, t* > KAt •

+ T 1ti:]3 (t*) (5-2)
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W 0

-_EN02(t*)

T1 -_Eo3(t*)

_E_2 (t*)

(5-3)

Where the strapdown system is initiated t* - K&t seconds after the last measurement.

Let t* - KAt = _t' the prediction interval.

5.2.2 Observed Sensor Output

In the development of a processing method, we will assume that the gyros and accelerom-

eters are linear with unit scale factors and zero bias. Actual values will be used in the

application to a real alignment problem. Further, we assume that the gyros and accel-

erometers have relatively large band widths, i.e., we will neglect the sensor dynamics.

The preprocessed sensor outputs are integrals of acceleration and angular velocity.

Namely, the outputs are:

P/_t) : j t t
_ a_A(l")dr + f nA(r)dr

t- 4t t- At

pG(t ) = !t _G (v)dT + ft_ n G(I") dr
t- At t- At

where nA(r ) and nG(r ) represent noises introduced by the sensors. Further the outputs

are observed at discrete times At, 2 At, ---, KAt. Denote these outputs by pA(j) and

pG(j)o It is convenient to transform the outputs pA(j) and pG(j) to the body frame: namely

r T + _dr

pA(j) = T_IpA(j) ij-l)At 0j g02(,)]

fJ_t ! _1(_11 [ nAl(_)l I
+ _ /_(_)/+ _

(j_ 1) Atl T 1 nA2(l")[ dl-
(5-4)
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_pG(j)
= T31p-G(J) (JJ-1)Atl T1 [_CNJ

E
- cd N

1 -_J

02(r)

03(7)

O2(V)

1JJt[0Jd jt1IniIn2d(j-l) At 03(T)/ (j-1) At nG3(f)

L

dT

(5-5)

Since T1 is orthogonal, and since T 2 and T 3 are nearly orthogonal, T 1 _ T) + T21nA(T)

and T3 _nG(r ) have the same power spectrum as a_(T) + nA(r ) and nG(T), respectively.

This simplification will be used in equations (5-4) and (5-5) since only second order

statistics are used in the following discussion.

Note that the components of c_ (1-), nA(_'), and nG(1- ) have been assumed statistically

independent and identically distributed.

In the following sections, estimation techniques are developed based on the above models.

5.3 ESTIMATION OF GRAVITY IN LEVEL ALIGNMENT

Estimations of the components of gravitational acceleration in the body frame are based on

the observation equation

tlI ]Ii]= T 1 + T I - e3(T) + _c_(T) + nA(T), dr (5-6)

(j-l) At O2(T) i

with j=l, .... ,K. Using the observed accelerometer outputs in the body frame, _pA(j)

(j=l, ... ,K), our goal is to estimate the average components (5-1) or instantaneous

components (5-2) in the presence of the disturbances _t) and nA(t ) given in (5-6). The

former problem is described in the following Section (5.3.1); the latter problem is

discussed in (5.3.2). Note that the basic operation is differentiation; we obtain ac-

celeration from velocity measurements.
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In the following subsections several estimation methods are developed from mathematical

statistics. A general discussion of Level Alignment techniques appears in 5.3.3; and the

recommended technique is presented in 5.6. The characteristics of several techniques are

described in Section 5 of the trade-off document. These techniques are simple average,

posterior-mean estimate of average components, posterior-mean estimate of instantaneous

components, and iterative estimate of instantaneous components.

5.3.1 Estimation of Average Components

The objective here is to estimate the average gravitational acceleration components in the

I body frame namely:

i o0
Let _gB(t*) denote the true gravitational components at time t*.

I
Then the rms deviation of

the estimated average components (say _ B) from the true components can be bounded,

namely:

I
I

II

I

I

I
I

I

I

E [ (gB(t*)-_B)T(gB(t*)-_B) ] : E [ (gB(t*)-_B)T(gB(t*)-.... _B ) ] + E [ (-_gB-gB)T(_B-gB)-

+ 2E[(gB(t*)--gB )T(-gB- -gB )_ {IE((gB(t*)---gB)T(gB(t*)--_B)-Jl 1/2

_-^ T-* ]1./'212+ [Ek(_gB-_g B) (_gB-gB)
L

The first term corresponds to the rotational motion of the level frame about the average.

The second term corresponds to the error in -gB as an estimate of -gB" The objective is

to minimize the second term, accepting the first term (the error from the motion about

its mean).

In the following subsections three approaches to estimation are considered: simple average,

least squares, posterior mean. The first approach does not use any a priori information

about the noise spectra, alignment, gravity or earth rate magnitudes. The second approach

uses prior measurements of the noise spectra. On the other hand, it does not include the

prior geophysical measurements of gravity and earth angular velocity. The third approach

uses a priori information about alignment, gravity magnitude, and earth rate magnitude

plus measurements of the noise spectra, but the noises are assumed to be gaussian

processes. This third approach has several advantages: (i) prior geophysical measure-

ments are included and are weighted with their accuracy; (ii) the estimation techniques are

comparable to those obtained from a least squares approach in complexity; (iii) the resulting

techniques can be used recursively to continuously update the alignment matrix; (iv) the

posterior-mean estimate is optimum with respect to a large class of loss functions, not

I 5-11

I



!

I

,I
I

I
I

i

I
i

,I
I

I
'1

I

i

I
I

just quadratic• From noise simulation, we find that the posterior-mean techniques are

not sensitive to the gaussian assumption• (See Section 5 of the trade-off document• )

5.3• 1• 1 Simple Average

This approach is based on the assumption that we do not have any prior information about

the noise, gravity, earth rate, or alignment• In this case

1 K

^ _ PBA(j)
gB KAt j=l -

Note that the same estimate is obtained if K=I; and At is replaced by KAt•

5.3.1.2 Least Squares

Before developing a least-squares technique, it is convenient to define certain notations•

Let X be the 3K vector whose components are

Xj = PABI(J); Xj+K = PBA2(j>; Xj+2K = PA3(j)

withj = 1, .•., K. LetHlbe the 3Kx3 matrix

H 1

At

At
0

0

0 0

At 0

0 At

At

K-rows

I K-rows

_ K-rows

Let
r(j)

j_t

= __l)At 0r(T)d_'
with r = 2,3•

5-12
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Let • be a 3K vector with components

4_j = + g(Tl)13 ¢2(j) _ g(T1)12 ¢3(j)

¢j+K = + g(T1)23 ¢2 (j) - g(T1)22 ¢3(J)

¢

j+2K = + g(T1)33 _b2(j) _ g(Wl)32 ¢3(j )

Let_ = (¢2(1),...,¢2(K))and¢_T = (¢3(1),...,¢3(K)).

where H 2 is the 3Kx2K matrix defined by equation 5-7.

component s

Sj (j-1)At [al(r) + nAl(_)J dl-

(5-7)

j = 1,2,...,K.

•
Let N be a 3K vector with

j_t

Nj+K =(j{1)At _a2(r) +nA2(r)_dr

jAt
=

Nj+2 K (jJ_I)At
_(_3(T) + nA3(.'r)_ d'r

with j = I, ..., K. Then the basic observation equation 5-6 can be rewritten as

X = H 1-_gB + ¢ + N (5-8)

The objective is to estimate --gB in the presence of noise _¢ + N, given the observationsX.

The covariance of this composite noise is the sum of the covariances of • and N since

they are independent:
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Further

where ¢¢ is a K x K matrix with elements

(_¢¢)ij = EE ¢2(i) ¢2(j) ] , i, j = 1,...,K.

Note that 02 and _3 are assumed to be independent and identically distributed.

a+ n 0 0 nl
SN = Ea + n 0

o :_+

where _a + n is a K x K matrix with elements

Further,

(_a+n)ij = E_NiNj_ , i, j= 1,..., K.

These covarlance matrices can be expressed in terms of the correlation functions,

namely

At 0

_At-_J ¢8 (_ + (j-i) At) d_ + _AE_¢2(i) ¢2(J)] = _0 - t E At + _3 _0 (_ + (j-i) At) d_

At 0

E_NiNj] = SO t At-_ Ca (_ + (j-i) At) d_ + - At
_At + _ Ca(_ + (j-i) At) d_

At 0

o_ E _t-_J Cn (/a +(j-i)A t) dtz +
0 - At

E At - _ Cn(_ + (j-i) St) du

5-14
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where ¢O' _' and Cnare the correlation functions of e(_), _(T), n(_), e.g., ¢0 = E(O(0)O(T)).

From prior experiments we estimate the noise power spectra and correlation functions. *

The above integrals may be evaluated numerically or mathematically when the correlation

function is approximated by a mathematical formula. For example, assume

Ce(_ = c le-c21TI

Then

2c I e-C2 lj-il At

C_¢¢)ij = [ cosh(c2At ) -11, i / j
c 2

2c 1

(E¢¢)i i -

(c2)2

[e -c2At -1 + c2At2

The same methods can be applied to the other covariance matrices.

Note that H 2 is evaluated by using prior estimates for the value of T 1 and g, denoted by T1

and _. Precise values are not needed since H 2 is used in the noise model. Corrections to

H 2 would be of second order.

Based on the composite measurement ecluation (5-8), the objective is to find the unbiased

linear estimate of --gB' say gAB(X__),which minimizes El-_gB - g_(X_)l2 as a function of g(X).

Itfollows from the Gauss-Markoff theorem that __B(X) is the value of g that minimizes

IMX_- M Hlgl 2, where M is the nonsingular matrix such that ME4__NMT = I.**

*Spectra data is given by H. Weinstock in "Limitations on Inertial Sensor Testing Produced
by Test Platform Vibrations", NASA Electronics Research Center, Cambridge, NASA
TN D-3683, 1966.

**See H. Scheffe', Analysis of Variance, John Wieley, 1959, p. 14.
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In fact [B(X) is a minimum variance estimate for each component of --gB" One can show that

(5 -9)

Further the expected value of $_B(X) is g-B' even if we have used an incorrect covariance

matrix _¢ + N • The covariance matrix of _B is

E[($B- --gB)(gB- --gB )T]=(HT_'-I"_+NH1)-I
(5-i0)

5.3.1.3 Posterior Mean

In the following discussion we assume that ej(T), _T), nA(T ) are gaussian processes.

Hence the "optimum" estimate of -_B is the posterior mean• This estimate is optimum

with respect to any loss function L(E) on each component where*

(i) L(0) = 0

(ii) L(E2) > L(E1) >

(iii) L(E) = L(-E).

0 when E2 >- E 1 _ 0

For example, let -gB be an estimate of --gB"

and

and

I ^12E _B2-gB2

E I gB3-_B31 2

Then

*See S. Sherman '_Nonmean -Square Error Criteria" IRE TRANS. ON INFORMATION
ri_ T-T "1C"f'VO "XY" "_T_I "kT_ 3 p. 19.:,
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are all minimized when _B is the posterior mean. As a second example, let c1, _2' c3

I represent the maximum admissible errors in components of gravity. Let

I Then ^ t lE_LI(gBI-gB1)] = Pr IgBl-gBll > C1

minimized

i are nil when gB is the posterior mean. (The expression "Pr (- ]" denotes"probability that [-] '%)-

I To evaluate the posterior mean, we first determine the conditional distribution of X, given
--gB" In this subsection the notation is the same as that in 5.3.1.2. From equation (5-8),

it follows that X is normally distributed with mean HI_B and covariance _¢+N"

I From prior observations we have an estimate of orientation of the ISU; and hence we have

an estimate of T1, say rr 1. Also we have an estimate of the magnitude of _B' say _" With

I these estimates, a prior distribution can be defined for -gB' namely, gaussian with mean

g B = 2"1

and covariance

g 1

I

I

I

I

L2 10 0

0 _2a2

where _g is the rms error in the estimate of ]__; anda 0 is the rms error in the estimate
of vertical (expressed in radians).

I
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This prior distribution implies that the distribution of -gB is isotropic in a horizontal

plane.

Applying Bayes formula we find that the posterior distribution of -gB' given X, is gaussian
with mean

_B(X ) = I-T_-I . -I -i T -i ~,n I _+Nnl +2_ ) (HII_+NX - +Y__lgB ) (5-11)

and covariance matrix

.HT_-I --)-1l_ = [ lz'¢+NHI +l]_ 1 (5-12)

The estimate gB (_X) represents the optimum combination of the measurements X and

prior data weighted by their respective errors. Note that the covariance is

^ T -1 E_ 1)-1E_(g-B - gB (x--))(g-B - _B (X))T_ = (HI_ ¢+N HI +

If our prior alignment information is poor, the posterior-mean estimate reduces to the

-_ and _e -*_°, then _=1.., 0 and expressionleast-square estimate. Specifically, as _g g
(5-11) approaches expression (5-9). Also the covariance (5-12) approaches (5-10).

Thc cstimate (5-11) and covariance (5-12) are the basis for an iterative alignment technique.

Specifically, the initial gB ( 1),-2 _,_l)'s are obtained from K measurements based on _B and
D#. The second estimate g_) and covariance D_2) are obtained from a second set of K

measurements based on _(_1) and 5_1); etc. This iterative technique is sub-optimal since

all -_Oofthe prior _ measurements in terms of _)'" and Dt_)." Awe are summarizing true

recursive "least-squares" technique involves significantly more computation since suc-

cessive measurements are correlated.* Also, all back measurements are used in the

current computation. The intermeasurement correlation can be eliminated by augmenting

the measurement variable. ** This approach also results in a very complex estimation

procedure. From a practical viewpoint, the sub-optimal technique described above is

a reasonable compromise.

*P. Gainer, "A Method For Computing the Effect of an Additional Observation on a
Previous Least-Squares Estimate", NASA Langley Research Center, NASA TN
D- 1599, lvoo.

**See M. Aoki, "Optimization of Stochastic Systems", Academic Press, i967, p. 38ff.
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5.3.2 Estimation of Instantaneous Components

In the previous subsection we developed several techniques of estimating the average

components of acceleration

T 1 0
0

In this subsection the objective is to estimate the instantaneous components at time

t* > KAt; i.e.,

T 1I] j+ T 1 g03(t*)

L g02 (t*)

In the following discussion we assume that the stochastic inputs Oj (r), _(r), nA(T ) are
gaussian processes. The discussion in Section 5.3.1.3 applies here; the posterior mean

';;ill be used te estL_..ate instantaneous nompnnent,_, lfA_.r p2Lix_ alignment data is poor,

the posterior-mean estimate reduces to the least-squares estimate.

The vectors X, N, ¢1 ¢2' and g--B' are defined in Section 5.3.1.

instantaneous components i.e.,

I1S* = T 1 +T I° ]i -g s 3 (t*)

L g82 (t*)

Let S* denote the

To obtain the conditional distribution of S* given X, we first obtain the joint distribution

of (S*, X). The components of (S*, X_) can be expressed in terms of fundamental random

variables as follows:

S_ : gBj + (T1)j3g0_ - (Ti)j2gO_ , j = 1,2, 3

X i = _B1At + (Wl)i3g¢2(i) - (Wl)12 g¢ 3 (i) + N i

Xi+ K = _B2At + (Wl)23g¢2(i) - (T1)22g¢3(i) + Ni+ K

Xi+2K = _B3At + (Wl)33g¢2(i) - (Wl)32g¢3(i) + N,._,,_
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or in matrix form as follows:

where Z T is the vector

=VZ

.... , 0* ..., _ 3(K) _Z--T EgBI' gB2, gB3' NI' N3K, 2' ¢2 (1), °°°, ¢2 (K), 0_, _3(1),

and where V is the corresponding matrix. Note that V can be evaluated using prior

estimates _ and _1' since they only enter as multipliers of _2 and ¢ 3" A prior distri-

bution of -gB is based on prior alignment data - namely, gaussian with mean

g_B = T1 0

0

and covariance

g Fo2o ITIL: :o _2_2

a similar prior distribution was used in Section 5.3.1.3.

with mean

The variate Z is gausslan

___T = [gBl' gB2' gB3' 0, ..., 0!

and covariance
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Ez

_g_L

I

I

-I

I

I

--I
-M

I

I
- I

3

I

_N I

I I

I--I
I l

j coL__-.-c__L J
ICll

- 1

I
I
I
I

3K 1 K

I I

I I

I l

Fc_ cI ...

I

i I

1 K

cK

J

3

3K

1

K

K

where

At= ¢0(v- (K+I-j)At- Et) dT
0

with t* = KAt + Et.

-b21 T I
K ¢0 is approximated by ble

cO = b 1

, then

bl b2 F(j-l)At - t*]Eeb2At _ 1]
Cj = -- e

b2

Hence, (S*)is a gaussian variate with mean V _ and covariance VEZ VT._ The condi-

tional distribution of S* given X is gaussian. ? To evaluate the conditional mean and co-

variance, we must partition the mean and covariance matrix as follows:

t See T.W. Anderson, "An Introduction to Multivariate Statistical Analysis", John Wiley,

1958, p. 27ff.
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-L ll ,v zvT,-1V Z = and =
-- a2 B T

where a I is 3xl and A is 3x3. The conditional mean is

C

_ = -A-IBx + a I + A-IBa2 (5-13)

The conditional covariance is A-1. Note that

E [(S* - gB)(S* -__B)TJ = A -1

The discussion of iterative techniques in subsection 5.3o 1.3 applies here. The

estimate (5-13) can be used in such an iterative technique.

5.3.3 Discussion

Several level alignment estimation techniques were suggested in this section. A Monte

Carlo simulation was performed to select the best estimation technique. The simulation

i

I
I

I

I
I

I

I
I

is discussed in Section 5 of the trade-off report. Three techniques were considered:

simple average (5.3.1.1), posterior mean (5.3.1.3), and instantaneous estimation

(5.3.2.1). Several values of K, At, and T EB were tried. The effect of nongaussian

noise was also investigated. The instantaneous estimate is superior to the other estimates,

in some cases the rms alignment error being one-half the alignment error obtained with

the simple average. The instantaneous estimate is selected as the recommended technique.

The simple average is selected as an alternate technique, since it is computationally less

complex.

The simulation was also used to investigate the characteristics of the recommended

estimation techniques. The results of the simulation suggest the following conclusions

for level alignment:

The instantaneousestimate is probably not sensitiveto the noise distribution
(gausstan or nongaussian).

Rotational motion from the environment is most probably the dominant source
of error for long integration intervals (At > 15 sec).

The instantaneous estimate is more accurate than the simple average for
t _ OV _,.
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Instantaneous estimation and simple average appear to have comparable accuracy
for At < 15 sec.

If At is held fixed at about 30 seconds and the quantization increased, the
instantaneous estimate becomes less accurate than the simple average.

Low frequency environment noise is not the dominant source of error for short
integration intervals (At < 15 sec).

The above points are a summary of the detailed analysis of the simulation results included

in Section 5 of the trade-off document (Volume 2).

5o4 ESTIMATION OF GRAVITY AND EARTH RATE IN GYROCOMPASS

Estimation of the components of gravity and earth rate is based on the observational

equations (5-4) and (5-5). Using the observed sensor outputs I_B(j ) and pG(j),

j = 1, -.o, K, we estimate the average components (5-1) or the instantaneous

components (5-2) and (5-3). The average estimate is investigated in the following

section, 5o 4.1; the instantaneous estimate is discussed in 5.4.2. The basic estimation

problem in Gyrocompass Alignment is very similar to estimation in Level Alignment.

Note that the basic operation is differentiation. We obtain acceleration from velocity

measurements and angular veiocity from angle _ -

In the following subsections several estimationmethods are developed from a mathematical

statisticsviewpoint. A general discussionof Gyrocompass Alignment techniques appears

in 5.4.3, and the recommended techniqueispresented in 5°6. The characteristicsof

two techniques are described in Section 5 of the trade-offdocument. These techniques

are simple average and posterior-mean estimate ofaverage components.

5.4.1

Tim )

body frame - namely,

-gB = T 1 and

Estimation of Average Components

The objective here is to estimate the average gravity and earth-rate components in the

In using an estimate of the average components, we are neglecting the motion about the

average. 'The error bound dex ived hi ............ ° i _"^_ +^ E .... ,,
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In the following subsections three approaches to estimation are considered: simple average,

least squares, and posterior mean. The first approach does not use any a priori informa-

tion about the noise spectra, alignment, gravity, or earth rate. The second approach uses

prior measurements of the noise spectra. On the other hand, it does not include the prior

geophysical measurements of gravity and earth angular velocity. The third approach uses

a priori information about alignment, magnitude of gravity and magnitude of earth angular

velocity plus prior measurements of the noise spectra. However, the noises must be

assumed to be gaussian processes. This third approach has several advantages: i) prior

geophysical measurements are included and are weighted with estimates of their accuracy;

ii) the estimation techniques are comparable to those obtained from a least squares approach

in complexity; iii) the resulting techniques can be used recursively to continuously update

the alignment matrix; iv) the posterior-mean estimate is optimum with respect to a large

class of loss functions, not just quadratic. From noise simulation, we find that the

posterior-mean techniques are probably not sensitive to the gaussian assumption (see

Section 5 of the trade-off document).

5.4.1.1 Simple Average

This approach is based on the assumption that we do not have any prior information about

the noise, magnitude of gravity, magnitude of earth rate, or alignment. In this case,

I

I
I

I

I
I

I

I

I

1 K 1 K

_B KAt j=l KAt j=l

Note that the same estimate is obtained if K = 1 and At iS replaced by Kht.

5.4.1.2 Least Squares

Before developing a least-squares technique, it is convenient to define certain notation.

Let X be the 6K vector whose components are

xj = PAl(j) ,

Xj+3K = PGI(j) ,

with j = 1, 2, ...

Xj+ K = PA 2(j),

Xj+4K = PG 2 (j),

, K. Let H 3 be the 6Kx6 matrix

Xj+2K = PA3(j)

Xj+5K = PG3(j)
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At

At

_t

H 3 =

At

_t
At

&t

&t

At

At

At

/
-%/

6

Let

Cr(j)

_;(j)

j,J At= or (T) dT

(j-1)At

[jat _r= (1")d_"

(j-l) t

with r=2, 3.

Let ¢ be a 6K vector with components

I K

cT = (¢1' ¢2' "'°' ¢6K )

5-2 5

K

K

K

K

K

I



I

b

I

I

I
I

I

I

I
I

I
I

I

I

I

I
I

where

]

_Sj+K

_Sj+2K

_j +3K

Cj+4K

Cj+5K

= g(T1)13 ¢2 (j) - g(Tl)12 ¢3(J)

= g(Tl)23 ¢2 (j) g(Tl)22 ¢3(J)

= g(Tl)33 ¢2 (j) g(T1)32 ¢3(J)

= E-(T1)ll_O E + (T1)13_E]¢2(j)

+ (T1)13 _3(J)

: E-(T1)21_ + (T1)23_,_ _¢2(J)

+ (T1)23 ¢_(J)

= E-(TI)31 _E + (T1)33wEJ ¢2(J)

-i- •

+ (T1)33 ¢3 (])

(T i)12 _E¢3 (j)

(T 1)22 _ ¢3 (j)

(T 1)32 w E ¢3 (j)

+ (T i)12 ¢_ (j)

-_ °

+ (T1)22 ¢2 (J)

+ (T1)32 _2(J)

(5-14)

with j = 1, 2, --., K.

Let ¢_ = C¢2(1), ¢2(2), ..., ¢2(K)J

and (_)T .... _¢_(1), ¢_(2), ' ¢2+'(K)"_

and ¢T = L¢3(1) ' ¢3(2), "", ¢3(K)_

and _)T = F¢_(1), _(2), ..., _(K)_

Then equation (5-14) can be rewritten as follows:

-_2

¢ = H4 .-¢_

- -_3
+

23

where HA is the 6Kx4K matrix defined by equation (5-14) and is introduced for mathe-

matical convenience. Let N be a 6K vector with components
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Sj

Nj+K

Nj+2K

Nj+3K

Nj+4K

Nj+5K

= _ jAt Eal(T) + nAl(V)ldr

(j-1) At

= _?At [a2 (v) + nA2 (v)]dv

(j-1) At

= -j.JAt [a3Cv) + nA3Cv)]dv

(j- 1) At

: _jAt nGl(r)dT

(j-l) At

sJAt
= nG2 (r) dv

(j-l)_t

with j = 1, 2, ".', K.

basic observation equations (5-4) and (5-5) can be rewritten as:

x : H3 ÷2 ÷s

The objective is to estimate -gB and __E in the presence of noise ¢ + N.

The veCtor N represen_ts the environment and-sensor noises; The

(5-15)

The covariance matrix of ¢ + N is the sum of the covariance matrices, since the noises

are independent; i.e.,

Further,

De

r.¢+N = D_+_.N

F i i i

1.__¢_1_, + I o I o:Ii _ i

i_o+,S_+io,oHa t --- I---- HI

-Lti0 IsE_:
Lo I° l_o+_o+od
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where

I
(E¢¢)ij = E [¢2(i)¢2(J)]

I

I
I

I

I

I
i where

2 (1)¢2 (J)](E¢+¢+)ij = E[¢ + " +

(E_¢+)i j = E[¢2(i)¢_(j)]

with i, ] = 1, 2, ...

identically distributed. Further,

E_+n

E N =

, K. Note that 0 2 and 0 3 are assumed to be independent and

L0

E

Ea+ n

0

E G

.. EG_ / • _

-j

I

I

I
I

_(_+n)ij = E[NiNj] , i, j= I, ..-, K

(EG)ij = EENiNj] , i, j =3K+1, ... ,4K

These covarlance matrices can be expressed in terms of the correlation functions (see

subsection 5.4.1.2). The following identities* are useful in simplifying _¢+¢+ and

E_¢+ :

d2
E [_'(0)0'(r)] - - El0(0) O(T)]

dT2

I d

E[oC0 ) O'(T)] = --El0(0) O(f)j
dr

•..,.^-^ k ........... A +k.+ 0 Iv_ ,nrt _}_l_ nr_ qtatinnary orocesses.w_1_ we l_v_ _oo_.L_*_ _A_ 2_. I ----- -_ , ............ _

*Eo Parzen, "Stochastic Processes", Holden-Day, 1952, p. 83.
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Note that H 4 is evaluated using prior estimates for the value of T 1 and g, denoted by

1 and g. Precise values are not needed since H4 is used in the noise model. Corrections

to H4 would be of second order.

Based on the composite measurement equation (5-15), the objective is to find the unbiased

linear estimate of (gn, usE), say (_n(X), _E(x)), which minimizes El g,_ - g(X)l 2 as a function
_" 7" _ _-_'J -- -- J'_ -- I _L.p -- -- I

of g(X) and minimizes EI_ E -_(x)l_as a function of _(x). It follows from the Gauss-Markoff

theorem that (__B(X), _E_) is _e value of (g, __) that n_:mimizes

IVIX_- MH¢) 2

where M is the nonsingular matrix such that M_¢ + N MT = I.

&E(x) are minimum variance estimates for each component of _B
show that

In fact __B(_X)and

and _E. One can

_B(X) 1 : /HT_-I H3)-I HT_ -1 X (5-16)
___(_xj, 3 _+N 3 _+N-

Further the expected value of -gB ix) is _B' and expected value of 9 E (X) is _E, even if

we have used an incorrect covariance matrix E¢+N" The covariance matrix of

(-_B,_)is

(HT2;-I H3)-I (5-17)3 ¢+N

5.4. I. 3 Posterior Mean

In the following discussion we assume that the stochastic inputs are gaussian processes.

The "optimum" estimate of _-B and _E is then the posterior mean as shown in Section
5.3.1.3.

To evaluate the posterior mean, we first determine the conditional distribution of X

given (_B' _E). In this subsection the notation is the same as that in 5.4.1.2. From

equation (5-15) it follows that X is normally distributed with mean

H3I _B ] and covariance -
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From prior observations we have an estimate of the orientation of the ISU, and hence we

have an estimate of T1, say _ Also we have an estimate of the magnitude of -gB
(say _), the magnitude of _E, _y _E) and latitude (say k) from geophysical and

astronomical measurements. With these estimates a prior distribution can be defined

for _B - namely, gaussian with mean

and covariance

B~ = T1g

_2
g

_T

where _ is the rms error in the estimate of I -gBI and _8 is the rms error in theg
estimate of vertical (expressed in radians). Similarly, we can define a prior distribution

for _&E - namely, gaussian with mean

I o Iilsin X- 0 -c _, ~

~E
-_B = "rl o 1

cos X 0 sin X]

and covariance

_~ =

cos X

m

0 -cos _: _2

1 0 0

0 sin _ 0

0

(c_E)2a2

0

m n

0 sin

0 0

(_E)2_2 -cos X:
B

Ol COS0_I
0 sin

_T

where c7
o0

estimated direction of _t_ (expressed in radians).

rms error in the estimate of ]__E I and a8_ is the rms error in theis the

Let
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Applying Bayes' formula, we find that the posterior distribution of (-gB ' _B ) given X
is gausslan with mean

_B (X) / I l)= _@INH3 +_T 3_@+N x +_T 1 (5-18)

and covartance

T -1 _T1)- 1Z_o 5 = (H 3_+NH3 + (5-19)

The estimates _(X) and u3E (X) represent the optimum combination of the measurements

X and prior data weighted by their respective errors.

The alignment procedure described by (5-18) and (5-19) reduces to a least squares

procedure when the prior measurements are very inaccurate. Also, this procedure

can be used recursively to update the alignment matrix (see Section 5.3.1.3).

5.4.2 Estimation of Instantaneous Components

The earth's angular velocity is small compared with gyro quantization, in contrast to

gravity and accelerometer quantization. Hence, it is reasonable to estimate the average

angular velocity and instantaneous gravity. In Section 5.3.3 we concluded that the

posterior-mean estimate of the instantaneous gravity components is best, based on a

Monte Carlo simulation. On the other hand, based on the same simulation, there is no

advantage in using a posterior-mean estimate of earth rate as opposed to a simple

average (see Section 5.4.3).

5.4.3 Discussion

Several alignment estimation techniques are suggested. A Monte Carlo simulation was

performed to select the best estimation technique. The simulation is discussed in

Section 5 of the trade-off document. Two techniques were considered - simple average

(5.4.1.1) and posterior mean (5.4.1.3). Several values of K, At, and T EB were tried.

The effect of nongaussian noise was also investigated. The simple average was superior

to the posterior mean. An alternate technique is to use an instantaneous estimate of

g__(5.3.2) and an average estimate of _E The accuracy will be improved but at the price

of a significant increase in the computation requirements. Therefore, the recommended

technique is simple average of both accelerometer and gyro data.
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The simulation is also used to investigate the characteristics of the recommended

techniques. The accuracy of gyrocompass alignment is strongly dependent on quantization

errors of the gyro. The alignment error is of the order of 100 seconds of arc.

5o 5 CALCULATION OF ALIGNMENT MATRICES FROM ESTIMATES OF GRAVITY,

EARTH RATE AND OPTICAL ANGLES

The final operation in alignment is the calculation of the alignment matrix (see Chart

5-1). The basic equations are developed in Section 2.3.3 and are repeated here for

completeness. The Mirror-Alignment matrix is presented in Chart 5-3, the Level-

Alignment matrix in Chart 5-4, and the Gyrocompass matrix in Chart 5-5.

5o 6 RECOMMENDED ALIGNMENT TECHNIQUES

Referring back to Chart 5-1, we find that there are four basic types of equations:

alignment matrix, preprocessing, estimation, and estimation matrix equations. The

alignment matrix equations are presented in Charts 5-3, 5-4, and 5-5 for Mirror

Alignment, Level Alignment, and Gyrocompass. The alignment matrix computations

are the only computations needed for Mirror Alignment. The preprocessing equations

for level alignment and gyrocompass are presented in Chart 5-2 of Section 5. _.

that the dots on the left indicate which equations are used for Level Alignment and

Gyrocompass.

The estimation equations for Level Alignment are presented in Chart 5-6. The estima-

tion matrix equations are presented in Charts 5-7 and 5-8. The estimation equations

and matrix equations for Gyrocompass Alignment are presented in Chart 5-9.

The procedures required to implement the preceding alignment techniques are presented

in the Procedures Manual, Part 3. The estimation equations were programmed for the

Monte Carlo simulation, which is described in Section 5 of the trade-off document.
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CHART 5-3

MIRROR ALIGNMENT MATRIX

Inputs Ol, al' 92 and a2

From these quantities the alignment matrix is given by:

where

i--

T

(U'M )

= (E_.M1)

(N'M 1)

(M_Ix U__).(M1x M2)

iM_IxM_2[

(M1xN).(M1xI_2)

(E x N).(M 1 x M_2)]

IM1x M2i

(N x U).(M 1 x M2)

iM1 x M2i

(U x E).(M 1 x M2)

[M 1 x M_2[ iM 1x M2i

-(U_.M 11-

(E'M 1)

(N'M_ 1)

cos 81

= cos a I sin 81

sin(x I sin81

(u._M2)

(E_'M_2)

(N_'M_2)
m

cos {}2

= cos a2 sin 8 2

sin a 2 sin 82

An optional technique might utilize the value of IM 1 x M21 from a previous alignment

thus eliminating the aforementioned dot product and square root operations.
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LEVEL ALIGNMENT MATRIX

Inputs (g. _B1),(g. B2), (g" B3) and a I

From these quantities the alignment matrix is given by:

T

m

1 0 0

0 sina I cosa 1

0 -cosa I sina I

0

0

1

iMxxUi

0

1

o iMlXUi
(M 1" U)

IMIxUI 0

1 0 0

(U.B1) (U. B_2) (U.B3)

0 -(U.B3)(U.B2)

where

Q

(M 1.U) = (U.B 1)

IM_IXU_[=[1 - (M_Io_U211/2

(u_._) :(_._)/g

g : [(g. B1)2. (g. B2)2 + (g. B3)2 ]1/2

An optional technique might utilize any of the following additional inputs:

• The zenith angle (Ol) of mirror one might be utilized to find (M 1 • U) from

(M_I"U) = cos 01

• The magnitude of gravity (g)might be suppliedfrom a local survey. This piece
of informationcan be utilizedto reduce the number of required accelerometers
to two.
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GYROCOMPASS MATRIX

Inputs (_o B1) ' (j_. B2) ,(g. B3) ' ( E. B1 ! ( _.B2),and (_E° B3 )

From these quantities the alignment matrix is given by:

T

0

= 0

1

{wxul
CW.u)
[wxuI

where

• (w. u)

• Iwxul

0

1

IwxuI

0

(_'B l) (_" _¢) (_'_)

(U'B_I) (U'B_2) (U'_)

(W_x U)" (_-2 x B_3) (Wx U)- (B3x B1) (Wx U). (B_lX B 2)

= (W. B1)(U. B1) + (W. B2)(U. B2) + (W+ B3)(U. B3)

= _1 - (W. U)2_l/2

11 " (_"-_):CUP.e_)/
-- • (u°_) = (_._)ig

!

I

I

I

I

I

I

I

• 0_E C( E°B1)2+ (E. B2)2+ ( E. B3)271/2

• g = [ (g. B1)2 + (g. B2)2 + (g. B3)271/2

An optional technique might utilize any of the following additional inputs:

• The local latitude (k) might be utilized to find (W. U) from

(W. U) = cos X

• The magnitude _of gravity (g) might be supplied from a local survey.

• The magnitude of earth rate (o_E) might be supplied from a local survey.

A use of all additional inputs could reduce the number of necessary instruments to three

(either two accelerometers and one gyro, or one accelerometer and two gyros).
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ESTIMATION ROUTINE COMPUTATIONS- LEVEL

Input s:

Output:

Preprocessed accelerometer measurements,

and vector, b

X, estimation matrix, M,

/N

Estimate of acceleration components in body frame, goB i ,

at time t*

i=l, 2, 3

The basic estimation computation is

where

1

_g. B 3 (t*)A

MX+ b

xW

_£At 2 At
a. B Idt, J' _a- B_l dt,

At

K At At

• " • ]' a.B !dt,.[4 ao_.dt,..., ........
(K-l) At 0

KAt Kilt t]
f a.B 2dt, "" • j' a.B 3d

(K-l) _t (K-l) at

At = Intersample time

K = Number of samples

Posterior Mean Technique (Instantaneous):

the Estimation Matrix Computation Chart

Computations of b and M from

• Simple Average Technique:

b = 0

M (KAt)-I.-.(KDt)-I= (K_t)-l... (KDt) -1

L °
K

o 1
....... 1 ....... 1
[i_At) -"""[t_t) - [

A

K K
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ESTIMATION MATRIX COMPUTATIONS - LEVEL

Inputs:

Outputs:

inter sample time, At (sec)

number of samples, K

estimate of gravity, _ (ft/sec 2)

rms error in gravity estimate ag (ft/sec 2)

estimate of T EB, T1

rms angular error in prior estimate of vertical, a o (radians)

noise covariance functions (tabular)

• accelerometer noise _n(t) (ft2/sec 4)

• translational acceleration noise _a(t) (ft2/sec 4)

• rotational noise _o(t) (radian 2)

prediction time Et (sec)

alignment parameters M and b

The intermediate quantities _ , _n' _¢¢'
inputs.

Co, cj and E_ are computed from the

_ is K x K matrix with components

At

(Z_)ij=
0

tat - ul¢_(u + (j-i)at)du

0

+ _ _At + u]¢_(u + (j-i)At)du
-At

is K X K matrix with components

At

(En)ij = J"
0

[at - u] Cn(U + (j-i)At)du

0

+ __AtEAt+ u]Cn(U + (j-i)At)du

! 5-37
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CONTINUATION OF CHART 5-7

E¢¢ is a K x K matrix with components

(E¢¢)ij : f
0

_t

[At- u] ¢8(u+ (j-i)At)du

0

f
- &t

EAt + U] _0 (U+ (j-i)_t)du

Co = _o(o)

&t

c i : f Co(u+ (j-1)&t- K&t- Ct)du j : 1, 2, .--, K
J

0

where the integrals are evaluated by a convenient integration technique such as

trapezoidal rule or Simpson's rule.

E_ isa 3 x3 matrix

2

ag

Lo

0 1 ~TT 1

g-o-_j

From these intermediate quantities, EN' s Z'

• EN is a 3K x 3K matrix

I +E

n

EN =

0

V, A, B, a 1, and a 2 are computed.

E
n

I 5-38
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CONTINUATION OF CHART 5-7

Z is a (5K+ 5) x (5K+ 5) matrix

_Z =

3

3K

i

K

3 K 1 K

K

Numbers at edges of matrices denote dimension of submatrices.

• Matrices A (3 x 3) and B (3 x 3K) are submatrices

A B 1 = (VEzVT)_ 1B T D
m

where matrix V is the (3K + 3) x (5K + 5) matrix given on the following chart.

m

(TI)II

(TI)21 a2 =

m

At g (':i'1)11

A t'g (T 1)11

At _ (T 1) 21

At°g (T i)2 1

At g (T1)31

At'g (T1)31

a I =

K

K

I
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CONTINUATION OF CHART 5-7

Then, the outputs are given by:

• M = -A -1B

Note that A-1 is the covariance matrix of the estimate.

b = a_l + A-1B_
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I

ESTIMATION ROUTINE COMPUTATIONS - GYROCOMPASS

Inputs: Preprocessed accelerometer measurements, X, estimation matrix, M,

and vector, b

Outputs: E_ates
CC--'_D i ,

A
of gravity and earth rate components in body frame, g" B i

i=l, 2, 3

and

The basic estimation computation is

A

g'_Bl
A

g'B 2

,_/E/_B = MX + b
1

........
where

f &txT : _r -a°_B ldt,

L 0

KtXt At K_t

P a'B !dt, J' a.B 2dt, • • • r a.B' J .... J -- 3

(K-l) At 0 (K-i) At

dt,

At K At

w.B ldt, • -" , f _.B 1
0 (K-l) At

dt, " • " K_t 1, J_ _oB3 dt
(K-l) At

At = Intersample time

K = Number of samples

I 5-42

I



I

I

I

I
I

I

I
I

I
I

I
I

I

I
I

I

C_
I

o

0
Z
0

<

z

Z
0

0

0

I

<i

,.=4 e

J

I

I

I

o

t

0

i_

>
0

0

oi
II

'7

M
v

!

L_

!

!

I

II

0

_ 0

0
0

0 0

.ff
e-,

c_

N

I 5-43

I



I

I

I
APPENDIX A

THE MATHEMATICAL MODEL OF THE

V I BRATI NG STRING ACCELEROMETER

I
A- i.0 INTRODUCTION

I

I

This appendix describes the operation of the Vibrating String Accelerometer (VSA) that

has been selected for the ERC Strapdown Inertial Guidance System and develops a

mathematical model to be used to relate the output of this type instrument to an estimate

of applied acceleration.

I A-2.0 DESCRIPTION OF THE ACCELEROMETER'S OPERATION

A functionalblock diagram of the Vibrating StringAccelerometer (VSA) is shown in

I_ consistsof a seismic mass (mass 1 and mass 2 separatedF_gure A- 1o The accelerometer

by a spring) which is supported by: 1) two taut strings that function as oscillator "tank"

circuits, and 2) ligaments as shown in Figure A-1 and normal to the plane of Figure A-1.I

I
I

I

When the VSA is at rest or moving with constant velocity, the sum of forces acting on its

seismic mass is zero. When the VSA is accelerated, the resultant force acting on the

seismic mass changes so that it accelerates with the case. The displacement oI the

seismic mass, relative to the case, that is produced by this resultant force is negligible

except along the sensitive axis, A, as shown in Figure A-1. The tension in the strings as

a result will not be a_fected by any motion other than that along the sensitive axis. This

change in tension (from the at rest tension) of each _tring is, therefore, a function of the

acceleration acting along the A axis of the instrument.

I
I

I

I

Since the natural frequency of a vibrating string is a function of its tension, the vibrating

frequencies of the strings in the accelerometer are directly related to the applied accel-

eration along A.

Each of the strings of the VSA passes through a magnetic field supplied by the two permanent

magnets of Figure A-1. When set to vibrating in its field, an electric signal is generated

by the string. This signal is amplified and fed back to the string in such a manner that a

sustained vibration occurs. The electric signals so generated are nominally sinusoidal

with frequency equal to the resonant frequency of the individual string. The vibrating string

I
A-1
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Model: ARMA D4E Vibrating String Accelerometer

Axis: A is a unit vector directed along strings S I and S2

(the sensitive axis)

Figure A-1. A Schematic Diagram of the Accelerometer
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acts as a high Q tank cricuit for the oscillator within the associated feedback amplifier

electronics. The vibrating frequency of each string is read by using Schmidt triggers to

generate pulses corresponding to zero crossings of the respective sine waves. The

frequency of the zero crossing pulse train is proportional to the frequency of the vibrating

string°

A-3.0 KINETICS OF VSA

A-3.1 COORDINATE AXES

The accelerometer coordinate axes (A, O, P) used in the derivation of the fundamental

mathematical model are illustrated in Figure A-2. The unit vector A is along the nominal

position of the string, while O and P are unit vectors arbitrarily defined to make A, O,

and P a right handed, orthogonal system.

A-3.2 THE TENSION IN THE STRING

The forces acting on M 1 and M 2 along A are shown in Figure A-3. The lateral supporting

forces along _P (normal to the page) are not s'nowh_m flus xt2gg_eo - - --

The equations of motion for the two masses can be written

F 1 : _Fli =M1 a; F 2 : _F2j -M2a - (A-l)
i- - j

As we are interested in the tension of the strings, only the A component of equation A-1

will be considered.

(F 1.A) = Ml(a" A)

(_F2 .A) : M 2 (a- A)

(A-2)

Because the supporting force from the ligaments acts orthogonally to the string, we have

(_Fl-A__) = T3-T 1

{_ • A_±2 =:-) = T2-T3

(A-3)

A-3



I

I

I
!

1
I
I

i-
I
I
i
I
i
I
!
!
I

/
i
I
/
/

//.o

I
/
/

b
v-

/
/
/
I
i
I
I
/
/
I
/
/
/

0

.._A
V --
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Therefore from equations A-2 and A-3, we have

Ts-T 1 = MI(a.A)

T 2-T 3 = M2(a-A)

! which can be combined as

!
!

!

t-
I and

T2-T 1 = (T2-T3)+(T3-T1) =(M 1 +M2)(a.A) (A-4)

When the accelerometer is stationary a_= 0 and equation A-4 gives T 2 = T I. Let this tension

in the strings be defined as T o. When the VSA experiences an acceleration a, T 1 and T 2

will be changed to cause the seismic masses to accelerate with the case. If (a. A) is

positive (T 2-T 1) will also be positive. The tension in each of the strings can be written as

T 2 = T O + AT 2

T 1 = T O + AT 1

(A-5)

! AT 1 + AT 2 = (M 1 + M2)(a. A)

! The amount of change in the tension of both strings will be the same if the strings are

identical. In practice, however, the strings cannot be made to be identical.

! For the range of accelerations that is within the proportional limit of the strings, we can

write

!

!

AT 1 = Kl(a" A)

AT 2 = K2(a. A)

(A-6)

! where K1 +K2 =M1 +M2

!

!
A-5
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Beyond that range of applied acceleration, the strings creep and the mathematical model

derived in the following pages will not apply.

A-4.0 MODEL DEVELOPMENT

A-4. i THE RESONANT FREQUENCY OF A VIBRATING STRING

The resonant frequency of a uniform string under tension is directly proportional to the

square root of the tension.

For the vibrating strings S 1 and $2, their pulse train frequencies fl and f2 (which are pro-

portional to the respective resonant frequencies) can be written as

fl = CI_I

(A-7)

f2 = C2 T_-

C I _,,u are p, vpu, _, .... _j ,_v...... _ ,_ .............. dLmcnsio;_s_ density and other

physical properties of the strings. Combining equations A-5, A-6 and A-7, we have

fl = C1¢ T O - KI(a.A)

f = C_ ./T -IC_._n. A)
-2 -Z V -O --]."

By Taylor's expansion, this becomes

fl = C
I 1 I

__ 2

i _o- 2_oKl (a. A)- 8To_-o zl (a. A)2

K3(a_.A) 3

_o__%-o_('"_ ..

A-6
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f2 c_ +V__'_I __'___8T o T_o

+

,0_o_ (_'_ - ,_o__ _'A_'"

The above expansions will converge rapidly since the instrument is constructed so that T o

is much greater than either Kl(a. A) and K2(a. A). The frequency difference of the
two strings is

1 1

IA_r2 . _ I_T_o_---o V-o

The series given in equation A-8 converges rapidly because T o is made large. However,

C 1, C2, K1 and K2 are constants determined by the dimension and material of the vibrating

strings S 1 and S2. The accelerometer is manufactured so that (C1-C2) and (K1-K2) are

kept as small as possible (a highly symmetric instrument). For this reason, the even

order terms are very small and the linear term is the most significant. The approximated

frequency difference obtained by truncating equation A-8 after the third degree terms may

be written:

f2-fl = D1D 0 + Dl(a- A) + D1D 2 (a. A) 2 + D1D3(a. A) 3 (A-9)

where, by definition,

D1D0= (C 2- C1 )_oo

I

DI: 2T_(C2K2 +C1K I)

A-7
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8To _o (C2K_ - clK2)

DID 3

A-4.2 TiIE ACCELEROMETER READOUT

Let the signal generated by the string S be

,t _f 1dt
el(t) = sin_81+ jt °

where f is the frequency of the pulse train from string S (in pulses per second) and 8

is a constant. The number of zero crossings in the interval (ta, tb) is

t b _ A t2 t b
N 1 fldt = Eql + _ fldt

= _ta +At I t a

where (t a + Atl) and (t b - At2) are the times of the first and last zero crossings in the

interval (ta, tb) and Eq 1 is the quantization error given Dy

At 1
= f ldt - _tb

Eq 1 tJata + °tb _ At2fldt

The time increments At 1 and At 2 are defined by illustration in Figure A-4. In the same

way, for string $2, we have

N 2 Eq 2 [ tb= + f2dt
ta

A-8
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The difference in the number of zero crossings of the two strings can be written, using

equation A-9, as

tb
N2 - N1 = (Eql -Eq2) + f (f2 -fl )dt

t a

Eq +
tb

7 D1D0dt + j'tbDl(a'A) dt

ta t a

.tb
j D1D2(R.A)2dt + _tbD1D3(aoA)3dt

ta t a

A-4.3 THE VSA FUNDAMENTAL MATHEMATICAL MODEL

In summary, the readout of the VSA is two pulse trains corresponding_to the zero crossings

of the sinusoidal signals from the two vibrating strings. The input to the VSA is the

acceleration of the case along its sensitive axis. The accelerometer readout is related

to its input by the mathematical model given in Chart A-1.

A-IO
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THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

t b tb

J'ta f2 dt - _'ta

t b

fldt = (N2-N1)+ Eq = D 1 f (a.A)dt
ta

D I ! _ tb ....
+ _ ta [D0+D2(a'A)2+D3(a'A)3_dt I

WHERE :

• a is the acceleration applied to the accelerometer

• t a _ t _ t b is the time interval over which a is measured

A is a unit vector directed along the input axis of the accelerometer

N 1 and N 2 are the number of zero crossings detected in t a <t _t b
_L'Om .........rut. strings vl _.v accelerometer

Eq is the instrument quantization error due to the fact that t a and t b

do not correspond to zero crossings

• D 1 is the accelerometer scale factor

• D O is the accelerometer bias

• D 2 is the second order coefficient

• D 3 is the third order coefficient

• f2 and fl are string frequencies in pulses/second

I A-If

I
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I APPENDIX B

THE MATHEMATICAL I_,iODELOF THE GYROSCOPE

I
I

I

B- I.0 INTRODUCTION

The purpose of this appendix is to find the mathematical expression that relates the outputs

of the Honeywell GG 334A gyroscope to the environmental input to which this gyro is

subjected.

I Section B-2.0 is devoted to the general description of the 334A gyro and its principle of

operation. The mathematical model is then developed in Section B-3.0.

I B-2.0 DESCRIPTION OF THE GYRO OPERATION

t The Honeywell GG 334A gyro contains a gimballed rotor spinning at a very high angularrate (see Figta'e B- 1). A ,,J-_""_'^Av_,J,,_,----_°g_-s ao=,-_ng__............. ix ,_od fn su_nort., the rotor. The
i

I

I
I

I

gimbal is restricted by the gimbal bearing to rotate only about the output axis relative to

the case. The signal generator of Figure B- 1 consists of a moving coil attached to the

gimbal and a stationary wound stator attached to the gyro case. It generates an a-c voltage

with an amplitude that is directly proportional to the angular displacement of the moving

coil from its null position. In this way the gimba! deflection relative to the case is

measured. At each sampling cycle (30 6 KHz rate), the gimbal deflection is detectea,

sampled and compared to two thresholds (positive and negative of equal level) to determine

if a positive, zero or negative rebalance torque is to be generated. A current switch and

associated electronics provide the torque generator with correct torquing current pulses

of constant strength. The timing information (3.6 KHz) used to derive the cycle periods

is furnished.

I
I

I
I

Any angular motion of the gyro case about the input axis, G, will generate a gyroscopic

torque that tends to rotate the gimbal about the output axis, O. The signal generator

senses the resulting gimbal deflection and produces the signal to the gyro electronics

necessary to generate the correct torquing current pulses to the torque generator. In

this way, the gyroscopic torque developed initially about the gimbal axis is rebalanced by

the pulsive torque produced by the torque generator. The average rebalance torque is

...... •:^_,1 ,_ +l_...... _ ,r_7_n_rnnie" fnr(lue which is in turn proportional to the gyro
_,L U_UI I.JL&./II_J. I_U &,ll_ D,/- _ v_----" .... ,,m. -"

angular rate about G. A readout of the pulse train of the rebalance current is used as the

instrument's output.

I
B-1
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Model:

Axes:

Honeywell GG 334A single-degree-of-freedom, pulse

rebalance gyroscope.

S is a unit vector along the spin axis of the rotor.

O is a unit vector along the output axis as defined by

the gimbal.

G = O x S is the sensitive axis of the gyro.

I Figure B-1. A Schematic Diagram of the Gyro

I
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B-3.0

B-3.1

MATH MODEL DEVELOPMENT

COORDINATE AXES

!

!

The coordinate system used in the following derivations is illustrated in Figure B-2. The

gimbal axes (G, O, S) are defined as fixed to the gyro gimbal with O (the output axis)

directed along the gimbal rotary axis, S (the spin axis) directed along the gyro rotor spin

axis and G (the input axis) directed along the direction of O x S.

! The set (G, O, S) is right handed, orthogonal and is assumed to be coincident with the

gimbal principal axes.

! B-3.2 THE GIMBAL DYNAMICS

! The gimbal angular momentum can be expressed in the gimbal coordinate axes as

cr
H = 7_IGG(___° . G) G + [IOO (__g • O):O + [Iss(_ g • S) + HrJ S (B-l)

!

!

where IGG is the moment of inertia of the gimbal and the rotor about G, Ioo is the

moment of inertia of the gimbal and the rotor about O, ISS is the moment of inertia of

the gimbal about S, and H r is the constant rotor spinning angular momentum. (cog.G_),

(_cg.o), and (__g.s) are the components of the gimbai angular velocity about G, O, and
........ J-.'-. - I._

!

!

Since G, O, S are assumed to be the principal axes of the gimbal, all the products of

inertias IGO , IOS , IGS , etc. are assumed to be zero. The second law of rotational motion

states that the torque applied to the gimbal is equal to the derivative of the gimbal angular

momentum.

!

!

dH

T - - (B-2)
-- dt

Using equation B-1 and writing equation B-2 in component form, we have

! (T'G) : IGG(_ g.G) + (_g.o)(_g.s)(Iss-Ioo) + Hr(_g.o ) (B-3)

!

!
B-3
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: I00( _ g.o) + (a_g. S)(_g. G) (IGG-Iss)-Hr(c_g.G)

: ISS(_ g" S) + (wg. G)(_ g. O__)(Ioo- IGG )

(B-3)

(T. G) and (T. S) are reaction torques from the gimbal bearing.

only with the torque about the output axis, O, we may write

Since we are concerned

T O = (T- O) = Ioo(_ g. O) -Hr(_ g. G) + (_g. S) (xg. G) (IGG-Iss)

For a single-degree-of-freedom gyro, the gimbal can only move relative to the case about

the gimbal axis O. Thus the gimbal angular velocity can be expressed in terms of the case

angular velocity and the relative angular velocity between the gimbal and the case.

w g : w +('_g-w) :_ + @ 0

where __ is the gyro case angular velocity and O is the gimbal deflection with respect to

the case (see Figure B-3). Therefore,

T O : (T.O) : Ioo'@" + IOO(_ .O) - Hr(a_.G ) + (_.S)(c_.G)(IGG-Iss) (B-4)

B-3.3 THE GIMBAL TORQUE

The gimbal torque, To, is the sum of all torques applied to the gimbal about the output

axis, O_. T O includes a dampening torque, Td; a rebalance torque, Tr, provided by the

torque generator; and error torques.

The dampening torque is proportional to the rate of change of gimbal deflection angle, @ .

T d = -C0

The rebalance torque is

T r = -L5 k

where 5 k is the logic value of the pulse at the instant t k.

negative or zero pulses, respectively.

5k = +1, -1, or 0 for positive,

B-5
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L = L _U_to -,- - tk) - U(t - tk h)ii

where L is the amplitude of the pulseo

h is the pulse width

U(t) is the unit step function

t k is the k th sampling period.

Loh = "j'tk+lL dt is the strength of the pulse and would be constant for a linear rebalance

t k

loop. However, the torque rebalance loop will not be linear in reality, and Loh will be a

function of w. To take into account the effect of nonlinearity, let us assume

Loh = _ooh(1 +_(__.Gt))

where Loh is constant and a very small.

i _he errer terq,_,esLn_c!,_,_aea constant torque; an a-sensitive torque, an _a2-sensitive tor_ _

and other torques considered as noise (for example, reaction torque from the signal

generator).I

I
!

The constant torque is denoted by R'.

The a-sensitive torques are mainly due to the fact that the center of support of the gimbal

is not coincident with its center of mass. If the gyro acceleration is a_,the a_-sensitive

error torque is

i T I = B_ (a.G) + B6( a.O) + B}(a_.S)

I

I

i
I

where B_, B_) and B_ are gyro unbalance coefficients.

The a2-sensitive error torque is due to the fact that the gyro gimbal is not a rigid body.

To make the gimbal follow the motion of the gyro case, there are forces acting on the

gimbal through the gimbal bearing. The gimbal deforms when subjected to these forces.

Because of this deformation, the center of mass of the gimbal will be displaced from the

center of support and therefore produce an a 2-sensitive torque about the output axis. It
m

is assumed that the deformations also occur in the lateral direction as well as along the

direction of the acceleration.

i
B-7

i



!

li

l
l

l
il
I

t
II

!
I

l

l
l

I
I

I

If the acceleration is a, the a2-sensitive error torque is

T 2 = C_I (a. G._)2 + C_s(a. S) 2 + C_s(a. G) (a. S) + Cbs(a. 0) (a. S) + C_o(a. G)(a- O)

where Ch, C_S , C_s , Cbs , and Cio are so-called compliance coefficients.

The total girnbal torque is then

T O = -C0 -L5 k + R' + B_ (a. G)+B_)(a- O)+B_ (a.S)+C_l(a. G)2+C_s(a. S)2+ CIS (a. G) (a" S)

+ C_)S(a°O__)(a.S _) +C_o(aoG)(a.O) ÷ T n CB-5)

where T n is the torque due to other effects and is considered as a noise component.

B-3.4 CONCLUSION

Combining equation B-4 and equation B-5 we have

-C0 -L 5 k+R'+B_ (a. G) + B(_ (a. O)+B_ (a. S)+C_I(R. G) 2 +C_s (a. S)2+C_s (a. G)(a. S)

+C'_(a.O)ia'S)+Cl^(a.G](a.O)+T = T_,/_.O) - Hr(__.G)+(,_oS)(_c .G)(T__-T__)U_ "-- --""-- --" IU .... II UU'-- ---" --"'-- --"" kzL_ _"

where 0 is the gyro case angular velocity, and the component of the reaction torque,

IOO_, has been neglected since it is small compared with the damping torque, C0.

A rearrangement of equation B-6 gives

L 1 IR,5k = (0_-G) +
H r H r

+ B_(a-G) + Bb(a.O ) . B_(a.S) + C_I(a.G) 2

+ C_s(a.S) 2 + C_s(a.G)(a.S) + C_)s(a.O)(a.S) + C_o(a.G)(a.O)

- (IGG - ISS)(_.S)(_.G) - Ioo(_.O_) I

T C_
n

H r H r
(B-7)
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Let us now integrate equation B-7 over the N sampling periods starting at tin_leto

ending at time tn. We have

Loh n

_( _ 6k) = ftn(o_.G)d t + j.tnlRr

H r k= 1 to to L
+ BI(a.G) + Bo(a.O) + Bs(a.S)

and

where

+ CII(a.G) 2 + Css(a.S)2 + CIS(a.G)(a°S) + Cos(a.O)(a.S)

+ Cio(a.G)(a.O ) + QIS(_0.G)(a_.S) + J(_ .Oldt +An + Eq
(B-8)

¢c is the gyro case angular velocity

5 k = 1,0,-1 is the k th rebalance pulse

R' B_

R, BI, BO, BS, CII , CSS , CIS; COS , and CIO equal-- , --,
H r H r

t v _vcu c_ -1_ %s ck_
, _ , , , and _, respectively

H r H r H r H r H r

H r H r

-(IGG - ISS)

QIS - -T

rlr

Ioo

J=_

H r

fin Tn
An = j _ dt is the effect of noise torques

t o Hr

Eq = ft,,_C _ dt is a quantization error.

t o Hr

B-9
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However,

I
L o

h __ L--'hE1 + a('_'G)3
0

I

I
i

I

I

With _ very small, we can write

L h -
O

1 + (_(__,G)
Loh ;_ (l-_(_c.G))Loh

Multiplying both sides of equation B-8 by (1 - _ (,_ • G)) produces the gyro model as given

on Chart B-1.

Loh Loh

In the model, A¢ = _ iS the instrument scale factor. QH = -am is the coefficient
H r H r

of the term of the scale factor nonlinearity, a is very small, and the higher order effects

of ithave been ignored.

I

I

I

!
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C,_--k_RT B- 1

THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS:

A¢ = tN (_.G) dt + +BI(a.G ) + Bo(a.O ) + Bs(a.S ) + CII(a.G) 2 Css(a.S)2

+ Cm(a.G)(a.S)+ Cos(a.O)(a.S)+ CIo(a.G)(a'O)

+ QII (_'G) 2+ QIS(_.G)(c_.S)+ a _ (_'_ dt + An+ Eq

WHERE

is the angular velocity applied to the gyro

a is the acceleration applied to the gyro

t O s t _ t N is the time interval over which a and _ are measured

t N - t O = Nr, where N is an integer, andr is the gyro sampling

period

S is a unit vector along the spin axis of the rotor

O is a unit vector directed along the output axis as defined by the

gimbal

G is a unit vector along 0 x S (that is, the sensitive axis of the gyro)

5k is the kth gyro pulse, equal to _-1, -1, or 0 for positive, negative,

or no pulse

• A¢ is the gyro scale factor

• R is the gyro bias

• B I B 0 and B S are the gyro unbalance coefficients

• CII CSS CIS COS and CIO are the gyro compliance coefficients

QIS and QII are dynamic coupling coefficients due to gimbal deflection

and scale factor nonlinearity, respectively

J is the angular rate coefficient

An is the effect of gyro noise over the it0, tN_ interval

Eq is the gyro quantization error

I
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APPENDIX C

ALTERNATE FORM OF Q I'vIATRICES

In Section 2.2.4 the QG and QA matrices were expressed in terms of (QA)-I and

(QG)-1, which are the matrices calibrated in the ERC laboratory. The calibrated elements

were seen in Section 2.2.4 to have either the form Ak.B _ or Gk-B _ . Because the body

axes (Bk) are defined, the elements do not equate directly to physical ISU angles - angles

like the angle between, say, two gyro axes. It is possible, however, to express the Q

matrices as a function of physical angles only. Those expressions are found in Chart C-1

and C-2. In Chart C-1 we see the general expression, and in Chart C-2 we see the first

order approximation of the matrices. (Recall that the nominal QG and QA matrices are

identity matrice s. )

The form of the two matrices (QA and QG) in Chart C-1 and C-2 are, naturally, the same.

In Chart C-1 the Q matrices have been separated into sums and products of submatrices,

_here e_ch s_]bmafri× i,_ a function of onlv_e of ISU angle. For example, the first

submatrix is a function of only the angle between the mirrors; the second submatrix is a

function of only the angles between the mirrors and instruments; the third submatrix is a

function of only the angles between the accelerometers or gyros, and so forth.

The calibrated QA and QG elements can be equated to the elements found in Chart C-2,

allowing for the solution of the physical ISU angles. Such solutions could be useful 1or

the determination of the satisfaction of design requirements.

C-1
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Q MATRICES

7
I
I

QA I =

I

]

I
_J

I 0 0

-(M_ 1'M2) 1
0

LMlxM21 IMlxM21

0 0
1

L i
_MlXM21

0 0

(M_ I'A 1) (MI'A 2) (MI'A 3)

(M_2"_A 1) (M_2' A_2 ) (M2"A_ 3 )

0 0 0

0

0 0 0

(MlX M2)" (A2x A 3) (MlX M_2)'(A3x A 1) (MIx _i2)'(A_ix A 2

(A_2x A_3)'(A2x A 3) (A2x A_3)'(A3x A1 ) (A2x A_3)" (AlX _A2 )

(A_I'A2x A3 )2 (A_I'A2x A_3 )2 (AI'A2x A3 )2

(A3xA_l)"(A2xA3) (A3xA1)'(A3xA 1) (A3xA_I)'(A_lXA_2)

(A_f_2x A_3)2 (A_'_x A_3)2 (Aj_2x A3)2

(A1x A2)" (_.2x A 3) (A1x A2)" (A3x A 1) (AIX A2)" (AlX A 2)

L (AI.A2xA3)2 (AI'A2xA3)2 (AI'A2xA3)2 _

1 0 0

(A_ 1" A_2x A 3)

0 0

(A_I-_xA_3)

0 0

(A 1" A_2x A_3)

1

Q' = -(M- I"M2)

Llo
]M__IxM_2 ;

0

0 (M2.O_I)

!
I L

IMlXM

I'G1 ) (MI" G2) ('_[] (;3 ....

(G l" G_2x G3)2 (G_I" G_2x G_3)2 (GI' G_2x (;3)2

(G3x GI)'(G_2x G_3) (G_3x G_I)'(G_3x G_ I) (G3x G 1)'(G_ix G 2)

(M2'G2) (M2'G_3) ]

I (G,. G_x G3)2 (G i" G2x G_ )2 (G ,.G2x G3)2

I

0 0 ! (G-IX _2)" (_2x G-3) - - (G-lX G-2)" (Qlx G2)

_ (G-IX G2)'(G3x G I) ____ _G3) 2 (G-I'G-2x G-3)2 (GI'G2x G3)2 d(GI'G2x

I I
(M_IX _'42)'(G2x G 3) (M_IX M2)'(G3x G_ 1) (M_IX M2)'(G_IX G2)|

_ d L

o o -7

I 0

(%.G2x%)

i-_2 x G_

0 _ 0

i

I

I
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Q MATRICES (OPERATIONAL)

LET

N N N
A_I = M_I = G 1

N N
M 1 be perpendicular to M 2

IGNORING SECOND ORDER TERMS, WE HAVE:

where the superscript N denotes

the nominal vector

f 1

M2.A1- MrM 2

-(M 1" A3)

AI'A_2)

(M l'A_2- AI" A_2)

1

-(M 2 • A 3)

Or, letting A2.(M 1- A_l ) = M2.(M_I- A_l )

and A_I.(M 2-A_2 ) = MI.(M_2_A_2 )

1 (M1.M 2 - M_2.AI_ (__l.A3

-(MI'A2) 1 (M2. %

-(M l'A3) -(M2-A3)

[- 1

(M -G 1 - M1.M2 -GI'G2)-(MI'G 3)

_"-'1 --2 _-1 _2'

1

-(M__2" G_3)

Or, letting G2.(M 1- G1) : M2.(M 1- G1)

and G_I.(M 2- G2) : M_I.(M_2- G2)

1 (M1.M 2 - M2.G1)-(M 1" G2) 1

-(M 1" G3) -(M2" G-3)

- G3- G1) l

-1 G-2" G3) J

(MI"A3- A-3"A1)1

(M2 A31 A2 A 3)

,l% R . i-. t-_ . i-_ I"-]

_"--'I _3 _3 _-I_|

(M 2" G 3 - G_2"G_3)

1
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APPENDIX D

COiVIPUTER SYSTEM DESCRI PTION

This appendix contains a description of the laboratory computer and its associated equip-

ment. Section 1 describes the laboratory computer. Section 2 describes the Interface

Electronics Unit (IE(J), the device that interfaces the computer to the ISU. Section 3

describes briefly the devices used for the computer manual interface.

D-1.0 COMPUTER

The Honeywell DDP-124 computer is a small scale scientific/control digital computer

with a 1.75 microsecond memory access time. The memory is an 8, 192 word, 24-bit/

word core memory. Arithmetic is performed on 24-bit sign-magnitude (not complement)

data with the left-most bit of the data word containing the sign and the other 23 bits con-

taining a binary representation of the magnitude. The basic arithmetic register is a 24-

hit A Re_ster which is extended by a 24-bit B Re__ster for m,_!__ip!ic_tion_ division and

shifting.

The instruction repertoire contains 47 instructions allowing fairly flexible fixed point

processing. Unique instructions include a step multiple precision, store address portion

of A, output and input to A (may be ANDs) as well as input/output to memory, direct con-

trol pulse outputs and sense line skips. Because of the sign magnitude number representa-

tion, the computer has both arithmetic shifts (sign bit(s) do not shift) and logical snifts.

Indirect addressing may be performed by use of one bit in the instruction. Three index

registers are available.

A Fortran IV Compiler is available and is considered preferable by NASA for calibration

programming. The 124 is not equipped with floating point hardware so use of the Fortran

Compiler will necessitate use of time consuming floating point software routines. Because

of real-time considerations, Fortran shall not be used for alignment.

The computer interfaces with the Interface Electronics Unit, the displays and magnetic tape

unit via a direct memory access (DMA) subunit. This allows direct transfer of data from

and to memory under buffer control in one of two modes. These modes are the time sharing

mode and the hog mode. In the hog mode, the input/output will hold the memory until the

D-1
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entire transfer is completed. In the time sharing mode the input/output and the processor share

menLory with either locked out for one memory cycle while the other completes one transfer.

Execution times of instructions are as given in the DPP-124 Programmers Reference Manual,

and execution times and memory sizing for standard arithmetic subroutines are as given in

the DDP-124 Users Guide. One magnetic tape handler is available for program storage

and/or other uses.

D-2.0 INTERFACE ELECTRONIC UNIT (IEU)

The IEU provides the computer an interface to the system equipment. A block diagram of

the IEU is shown in Figure D-1.

The IEU counts information in its counters iron, the gyros, the accelerometer strings and

the timer. Each counter is compared to a manually selected interrupt condition. This

condition is selected as any number for the time counters or any power of two for gyro

and accelerometer inputs. When an interrupt condition is met, a signal is sent to inter-

rupt logic 3 if time counter 2 has satisfied it condition, interrupt logic 2 if time counter

.............................. _,_ _ _,_ ,_,_ -1 if a gyro or acceterometer registe_lvas

satisfied its condition. The interrupt logic generates an interrupt to the computer on its

I own interrupt channel and sends a reset signal to the counters. Interrupt logic 1 and 2
send reset signals to all of the counters other than time counter 2 and interrupt logic 3

sends a reset signal only to time counter 2. When a cotmter receives a reset signal, it

will hold the contents of the main register, clear an auxiliary, register and begin to ac-

cumulate data in the auxiliary register.

I

I
I

I
I

I

When the computer has received an interrupt, it will initiate a direct memory access

(DMA) controlled input from the IEU of the counters and ISU status registers. The main

registers of the counters are read. After the reading process has been completed, a

resume s_nal will be sent to all the counters from the DMA input control. This signal

will cause any counter that is counting in an auxiliary register to clear the main register,

add the auxiliary register to the main register, and continue accumulating in the main

register.

While the IEU has the capability of using any of the inputs to determine sampling rate as

described above, it is not expected that any criterion other than time counter i is needed

for the main calibration and alignment routines. The IEU interface program should verify

fh_f the f_ _'r'if_'r-lnn h_ _ h_ ..... _- iTn÷ ...... "I- i)

I
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Figure D-I. IEU Block Diagram

D-3

I



I

I

I

I
I

I
I

!
I

I
I

I

I
I

I

I
I

Since the IEU sampling determines the time to sample ISU data on the basis of a time

criterion, use of the IEU results in the maximum worst-case quantization error.

The IEU will transfer up to four 24-bit parallel data words from (and to) the ISU to (and

from) the computer. Output from the computer is via DMA trmlsfer.

D-3.0 COMPUTER MANUAL INTERFACE DEVICES

The operator interfaces with the computer via the display panel, a keyboard and typewriter

and a paper tape reader and punch.

The display panel can display nine numbers. Each number has a signed one decimal digit

mantissa and a signed five decimal digit characteristic. This capability will be used to

display results or intermediate results or request and to display normalized data output

from the IS_J during real-time data collection by the computer.

The display panel has three rows of eight buttons each to be used to select parameters to

be displayed and 24 buttons to select program options.

The keyboard and typewriter may be used to enter data into the computer in small amounts

and to furnish the operator with information such as desired settings of test table axes.

Maximum transfer rate is 15.5 characters per second.

The paper tape reader and punch will be ased to enter large amounts of data into the com-

puter and for output of the results of the procedure. Maximum transfer rates are 110

6-bit characters per second for the reader and 300 6-bit characters per second for the

punch.

D-4

I


