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ABSTRACT

This is Volume 1 of three volumes which report the results of a strapdown calibration
and alignment study performed by the Univac Federal Systems Division for the Guidance
Laboratory of NASA/ERC.

This study develops techniques to accomplish laboratory calibration and alignment of

a strapdown inertial sensing unit (ISU) being configured by NASA/ERC. Calibration

is accomplished by measuring specific input environments and using the relationship

of known kinematic input to sensor outputs, to determine the constants of the sensor
models. The environments used consist of inputs from the earth angular rate, the
normal reaction force of gravity, and the angular rotation imposed by a test fixture in
some cases. Techniques are also developed to accomplish alignment by three methods.
First, Mirror Alignment employs autocollimators to measure the earth orientation of
the normals to two mirrors mounted on the ISU. Second, Level Alignment uses an
autocollimator to measure the azimuth of the normal to one ISU mirror and accelerom-
eter measurements to determine the orientation of local vertical with respect to the
body axes. Third. Gyrocompass Alignment determines earth alignment of the ISU by
gyro and accelerometer measurement of the earth rate and gravity normal force vectors.

The three volumes of this study are composed as follows:

° Volume 1 — Development Document. This volume contains the detailed develop-
ment of the calibration and alignment techniques. The development is presented
as a rigorous systems engineering task and a step by step development of
specific solutions is presented.

e Volume 2 — Procedural and Parametric Trade-off Analyses Document. This
volume contains the detailed trade-off studies supporting the developments
given in Volume 1.

® Volume 3 — Laboratory Procedures Manual. In Volume 3 the implem entation
of the selected procedures is presented. The laboratory procedures are
presented by use of both detailed step-by-step check sheets and schematic
representations of the laboratory depicting the entire process at each major
step in the procedure. The equations to be programmed in the implementation
of the procedures are contained in this volume.
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As an aid to understanding the symbolism, we present the following rules of notation:

Wherever possible symbols will be used which suggest the name of the
parameter involved.

Lower case subscripts are used almost exclusively for indexing over several
items of the same kind. Examples are the indexes used to identify the three

gyros, the three accelerometers, the two pulse trains of each accelerometer,
the two clock scale factors, etc.

Lowercase superscripts are used to index over different positions.

Uppercase superscripts and subscripts will be used to distinguish between
parameters of the same kind. For example, T is used to identify a

transformation matrix. Lettered superscripts such as BE in TB E identify

+1 nwtiAad + £, 1
the particular transformation.

An underline will identify a vector.

Unit vectors are used to identify lines in space such as instrument axes
and the axes of all frames of reference.

Components of any vector along with any axis is indicated by a dot product
of that vector with the unit vector along the axis of interest.

The Greek sigma (X) will be used for summations. Where the iimits of
summation are clear from the context, they will not be indicated with the
symbol,

The Greek Ais always used to indicate a difference.

S ¢ and C ¢ are sometimes used to identify the sine and cosine of the angle #.

A triple line symbol (- ) will be used for definitions.

A superior "~" denotes a prior estimate of the quantity.

A superior "~ "denotes an estimate of the quantity from the estimation routine.

ix



B,

By Bg Bg

CirCssC1s10C0s

Counters

Applied acceleration vector.

Elements of (QA)"1 .

Unit vector directed along the input axis of the ith accelerometer
i=1,23.

A vector determined by the Alignment Parameter Evaluation
Procedure and input to the Estimation Routine.

Unit vector directed along the ith Body Axis i = 1,2, 3.

Gyro unbalance coefficients.

Gyro Compliance Coefficients.

The six frequency counters used as data collection devices
during calibration.

Accelerometer bias.

Accelerometer scale factor.
Accelerometer second order coefficient .
Accelerometer third order coefficient.

Unit vector directed East @2).
Unit vector directed along the ith Earth Axis.

Quantization error.

Frequencies of accelerometer strings 1 and 2, in zero
crossings per second.

A triad of orthogonal unit vectors attached to the base of the
table.

Unit vector directed along the ith input axis of the gyro.

Elements of (QG)_l.

The vector directed up that represents the normal force to
counteract gravity in a static orientation. Correspording to
popular convention, this is referred to as the "gravity vector'

Input,/Output.
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IEU

ISU

Ny
=1

10

Triad of orthogonal unit vectors attached to the inner axis of
test table.

Interface Electronics Unit — system interface device for the
laboratory computer.

Inertial Sensing Unit.
Gyro angular rate coefficient.

Number of samples of accelerometer and gyro data taken in
Alignment.

Position index used in calibration (superscript).

Matrix generated by Alignment Parameter Evaluation and used
by Alignment Estimation Routine.

Unit normal to ith mirror.

Unit vector directed North (I_E_3).

Count of output pulses from strings 1 and 2 of accelerometer.
Instrument noise in accelerometer.

Instrument noise in gyro.

Count of output pulses from strings 1 and 2 of accelerometer.

Count of timing pulses from master oscillator to frequency
counters,

Count of timing pulses from master oscillator to IEU.,

Unit vector directed along the output axis of gyro.

Triad of orthogonal unit vectors attached to the outer axis
of the table.

Unit vector in the direction of the projection of M1 in the plane
formed by E and N. -
Defined on Chart 4-12 of the Development Document.

Defined on Chart 4-4 of the Development Document.

The transformation from accelerometer input axes to body axes.

The transformation from gyro input axes to body axes.
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QII‘ QIS Gyro dynamic coupling coefficients.

Position vector.

R Gyro bias.

i Triad of orthogonal unit vectors attached to rotary axis of
- table.

Resolver Angular resolvers on each axis of the test table.

§i Unit vector directed along the ith gyro spin axis.

§® Scale factor associated with pulsed output from test table rotary
axis.

S'lr Scale factor associated with timing pulses accumulated by the
frequency counters.

Sg Scale factor associated with timing pulses to the IEU.

t Time.

T n alignment, the determined alignment matrix to transform
from body to earth axes. T is equivalent to TBE.

TBI Transform from ISU body axes to inner axis frame.

~BRm : .

T Transform from ISU Body Frame Axes to Rotary Axis Frame in

the mth orientation.

Triad of orthogonal unit vectors attached to the t1iunnion axis

~1 nf tln bt bahln
UVl LIIC LT DL LANliLe

U Unit vector directed up (E,).

N Velocity vector.

W Unit vector directed along (,_L:'E.

X-Y Dual input on frequency counter that will difference two pulse
trains for comparison with a third input (Z).

zZ Input on frequency counter for pulse train.

oy The azimuth angle of the normal to the ith mirror,

(Ey)ij Pulsed output from the jth string of the ith accelerometer.

(Z9) Pulsed output of the ith gyro.
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SECTION 1
INTRCDUCTION

This document, in conjunction with two other volumes, describes the achievements of a
six month study conducted for the:

Guidance Laboratory

Electronics Research Center

National Aeronautics and Space Administration
Cambridge, Massachusetts

by the:

Aerospace Systems Analysis Department
Univac Federal Systems Division

Saint Paul, Minnesota

A Division of Sperry Rand Corporation

The purpose of the study is to develop techniques and outline procedures for the labora-
tory calibration and alignment of a strapdown inertial sensing unit. This document,
Volume 1, presents a detailed analysis of the calibration and alignment problem and
develops a specific solution. The nucleus of the study output is the contents of this docu-
ment, The Procedural and Parametric Trade-off Analyses, Volume 2, is a set of
addendums which serve to justify decisions made and conclusions reached in the develop-
ment of specific calibration and alignment techniques. Reference is made to the contents
of the trade-off document throughout Sections 4 and 5 of this document. The Laboratory
Procedures Manual. Volume 3. describes specific procedures for an operational im-
plementation of the solutions obtained in Volume 1. It is an extension of the results of
Volume 1 into an operational laboratory situation. The last subsections of Sections 4
and 5 of this document (Volume 1) form the interface between the study developments and
the specific procedures found in Volume 3.

////
At the time of this writing. the Guidance Laboratory of NASA/ERC is in the process of
configuring a strapdown inertial sensing unit which they will use to evaluate many ad-
vanced concepts. By integrating this ISU with a system computer, they will attain a
flexible system level research tool for testing analytical concepts, system design con-
cepts and fabrication concepts. In parallel with the development of the Guidance and
Navigation System, a laboratory facility is being designed which will contain all of the
test equipment necessary for conducting the experiments on the strapdown G and N System.
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Among the more important experiments to be conducted are those which determine the
feasibility of easily and precisely calibrating and aligning the sensor package in an
operational laboratory situation. Before such experiments can be conducted, the cali-
bration and alignment techniques must be developed and definitively documented. The
Guidance Laboratory contracted Univac's Aerospace Systems Analysis Department to
develop and document those techniques. The specific tasks which Univac was contracted
to accomplish are as follows:

e To sp)ecify mathematical models for the system sensors (gyros and accelerom-
eters).

o To define the mathematical description of the sensor package.
o To develop techniques for the determination of all calibration constants.

e To develop three techniques for initializing the alignment of the ISU. The three
techniques involve the use of

4  Optical measurements only
4 Accelerometer measurements for level, and an optical azimuth measurement
4 Accelerometer and gyro measurements only.

m . =L
[ ] 10 dllutiipiidil DpCLllIcC

e To specify all equations and procedures for the accomplishment of a calibration
and alignment in the ERC Laboratory.

e To document, in three volumes, the calibration and alignment developments,
trade-offs, and procedures. )

‘I'he satisfaction of the first four items is accomplished in this Development Document.
The trade-offs are described in the Procedural and Parametric Trade-off Analysis

Document and the procedures are outlined in the Laboratory Procedures Manual.
[/
77

The presentation of the calibration and alignment developments in this document,

Volume 1, is divided into five sections. The purpose of the introduction is to briefly
state the study problem (accomplished in the above listing of seven items) and to describe
the developments contained in Volume 1. The purpose of Section 2 is to delineate the
calibration and alignment requirements. Section 3 presents a system description of
calibration and alignment with emphasis on the laboratory environment. The specific
calibration and alignment techniques are then developed in Sections 4 and 5, respectively,
As an introduction to the scope of this document, the following paragraphs outline the
developments in these sections.

The calibration and alignment study tasks have been only generally stated in the preceding
paragraphs. Before the technique developments can be described, the specific engineering

1-2



and mathematical requirements of calibration and alignment must be stated. In Section 2
we accomplish the detailed specification of those requirements. A statement of the cali-
bration and alignment requirements will be simply presented as a list of parameters to
be determined in the laboratory. As a lead-in to that listing, Section 2 shows how the
requirements tie in to the larger system problem of navigation. We accomplish this by
presenting the general definitions of calibration and alignment as the determination of
constants required in an operational navigation loop, The mathematics of portions of the
navigation loop are delineated so that calibration and alignment can be specifically defined
as the determination of constants contained within the mathematics.

After specifying the calibration and alignment requirements in Section 2, Section 3 directs
our attention to the laboratory environment in which the calibration and alignment is to be
accomplished. As an introduction to the environment, we present in the first subsection
of Section 3 functional system descriptions of both calibration and alignment. The func-
tional description of the ERC laboratory calibration is presented in comparison with what
we call an Ideal Calibration. The comparison of the ideal with the actual ERC laboratory
calibration serves to illustrate those compromises necessary in the development of a test
laboratory. The functional description of alignment presents those separate operations
required in an operational alignment. Three functional diagrams are presented in

Section 3. one for each of the three alternative alignment techniques. All functional
descriptions serve to define those measurements, other than inertial instrument measure-
ments, which are required to accomplish the calibration or alignment. The additional
measurements correspond to an independent measure of the kinematic environment. The
determination of those additional measurements is the subject of the second subhsection of
Section 3. Section 3 is concluded with a brief description of the hardware available in the
laboratory, and the interfaces between those pieces of hardware.

The calibration technique developments in Section 4 are directed toward specifying the
details of the calibration functions which are generally defined in Section 3. The basis of
calibration is presented in Section 3 as the input of environment and inertial instrument
measurements into computations which are a function of those measurements and the un-
known calibration constants. The general equations from which the computations are
evolved are developed in the initial subsection of Section 4. Those general equations are
developed by introducing the parameters which identify the laboratory kinematic en-
vironment and the ISU geometry into the inertial instrument mathematical models. Subse-
quent to the development of the general equations, particular choices of test table orienta-
tion are used to define the ""Positions'' to be used for the determination of all calibration
constants. The chosen positions are shown to produce significant reductions in the com-
plexity of the general calibration equations. With the aid of these reductions it is
possible to solve for the calibration constants by a series of relatively simple experiments.

1-3



In the third subsection of Section 4 the calibration computations are tabulated. The
quantization and instrument and environment noise considerations are described in con-
junction with the tabulation. The fourth subsection of Section 4 describes those laboratory
activities required prior to the actual calibration. All such activities are related to either
the survey of the location of the ISU relative to the test table, or the compensations for the
small low frequency motion of the test table base. The last subsection of Section 4 forms
the tie between this Development Document and the details of calibration implementation
presented in the Laboratory Procedures Manual, Volume 3. In Volume 1 the implementa-
tion of calibration is only briefly described, the details being left as the subject of

Volume 3.

The alignment techniques developed in Section 5 expand the functional descriptions of
alignment as presented in Section 3 into a set of alignment techniques. Alignment is
broken into three separate routines: preprocessing of sensor outputs, the application of
chosen estimation procedures to the preprocessed outputs, and calculation of alignment
matrices from the estimated values, Since the preprocessing and alignment matrix
calculations are developed in Section 2, the major emphasis in Section 5 is centered on

Before describing the development of an estimation technique, the basic functional re-
quirements and the preprocessing computations are presented, respectively, in the first
two subsections. The third subsection describes a detailed development of models for
the environmental disturbance and sensor noise. The next two subsections are then de-
voted to the development of two approaches for estimation in Level Alignment and Gyro-
compass Alignment. The first approach develops a procedure for estimating average
values of the gravity and earth rate vectors, while the second approach leads to estimates
of instantaneous values of these vectors. Estimation techniques are developed using three
basic statistical procedures: simple average, least squares, and posterior mean. From
these estimates the average and instantaneous values of the alignment matrices are then
obtained. The last subsection of Section 5 describes explicit equations for the recom-
mended alignment techniques, and ties the results of Section 5 to the procedural details
of alignment described in the Laboratory Procedures Manual.

1-4



SECTION 2
CALIBRATION AND ALIGNMENT REQU IREMENTS

The purpose of this study is to determine a procedure for the calibration of the NASA/ERC
strapdown inertial sensing unit (ISU) and to delineate three operational laboratory tech-
niques for the initial alignment of the same inertial sensor unit. Clearly, the initial task
in this, or any study, is to carefully describe the problem as a specifically defined study
task. This we propose to do in this section of our report.

The key words in the above general statement of the study purpose are the words "calibra-
tion" and "alignment'. The first activity in this section will be to develop (in Section 2.1)
the definitions of those key words. Our approach to the development of those definitions
is to present a description of an operational navigation loop and, as a conclusion to that
description, to present calibration and alignment as the determination of constants re-
quired as inputs to the navigation loop. There are alternative approaches to the defini-
tions of these terms but we feel our approach is optimum in that it clarifies the necessary
relationship between the calibration and alignment problem and the larger system problem
of inertially navigating a propelled vehicle.

Subsequent to the navigation-system definition of calibration and alignment we will, in
Sections 2. 2 and 2. 3, describe the calibration and alignment requirements as they relate
to the ERC strapdown inertial sensing unit. Section 2.2 describes the calibration re-
quirements, and Section 2, 3 describes the alignment requirements.

The development of the calibration requirements in Section 2. 2 will be directed toward
the tabulation of the instrument constants and instrument-to-body-axes transformation
matrix constants which are necessary in an operational navigation loop. The first
activity in that section will be the description of the geometry of the ERC ISU. This will
be followed by a description of the inertial instruments contained in that ISU. The in-
strument-to-body-axes transformation matrices will then be described. All of the
described equipment and geometry will then be used to develop the navigation loop ""Pre-
processing Computations'. Finally, the constants in the Preprocessing Computations
will be defined as the constants to be obtained in calibration.

In Section 2. 3 the alignment requirements will be described as the real-time measurement

of the ISU fixed or earth-fixed coordinates of two vectors. Three alternative choices of
these two vectors will be presented, The geometry of alignment will also be presented.
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The final presentation will be the specific alignment matrix mathematics corresponding to
the three alternative alignment techniques.

2.1 DEFINITION OF CALIBRATION AND ALIGNMENT

The necessity for a calibration and alignment of an inertial sensing unit is directly related
to the use of the ISU in a vehicle guidance system. More specifically, calibration and
alignment requirements are related to the necessity for a real-time transformation of the
ISU instrument outputs into a best estimate of a vehicle's velocity and position. In this
section we will, from a discussion of real-time inertial guidance activities, define the
general calibration and alignment requirements.

The functional diagram shown in Figure 2-1 serves as a description of the initial activities
in a real-time navigation loop, That diagram will be the focal point of our attention for
the remainder of this subsection, Figure 2-1 shows only that portion of the navigation
loop which transforms instrument outputs into estimates of velocity and position, (The

t ahes

ahown )
L DUIUWIL,.

Q
o}
wn
]
c

The input to the ISU is the kinematic environment of the vehicle and ISU as represented

by the applied acceleration a and angular velocity w. The outputs of the ISU are (usually)
sequences of pulse counts taken over small intervals of time. These outputs are the in-
puts to the computer. The computer's immediate task is to convert those measurements
into a knowledge of velocity and position. The velocity (v) and position (r) must be rep-
resented as components (v- Qk) and (r- Qk) in the frame (I_)_k) in which one chooses to
navigate (Qk represents a triple, k =1, 2, 3, of unit vectors directed along the orthogonal
navigation axes).

The initial activity in the conversion to velocity and position is the transformation of the
pulse counts into estimates of the integrals of the instrument-axes components of applied
acceleration and angular velocity. The instrument axes are represented by the triads
Ay and G K ©f (in general) nonorthogonal unit vectors directed along the input axes of the
accelerometers and gyros, respectively.

The second activity, in the conversion to velocity and position, is the transformation of
the integrals of the instrument-axes components of applied acceleration and angular
velocity into integrals of body-axes components. The body axes (Iék) are a triad of
orthogonal unit vectors which are fixed to the ISU. These body axes can be defined in
various ways. They can be defined by use of any two of the instrument axes or they can,
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as they are in this study, be defined by use of two mirror normals. (The manner in
which this definition is accomplished for the ERC system will be found in Section 2. 2.)

The final activity in the conversion of instrument outputs into navigation-axes components
of velocity and position begins with the input of the body-axis integrals of applied accel-
eration and angular velocity to the translational and rotational differential equations of
motion. The numerical solution of those differential equations yields the desired velocity
and position. The solution of the rotational differential equations serves to transform

the argument of the translational differential equations into navigation-axes components.
The output of the translational differential equations solution is then the desired com-
ponents of velocity and position.

It is noted that various constants are required from computer memory as inputs into all
routines. The initial routine requires those instrument constants which scale and
correct the instrument outputs. The second routine requires the nonorthogonal three-by-
three matrices, Q and Q , which transform the integrals of the instrument-axes
components into the integrals of the body-axes components. The third routine, being
the solution of differential equations, requires initial conditions. The initial condition
for the rotational differential equation solution is an initial body-to-navigation-axes
transformation matrix. The initial condition of the translational differential equation
solution is an initial knowledge of navigation-axes components of velocity and position.
A knowledge of all of these constants is required prior to any operational use of the ISU.
The development of the numerical values of these constants can be divided into three
separate problems; and the statement of two of these problems can be used as a defini-

Furn e v P T B S
LIVl U1 Ca11prdLion anud aligiiiei,

The problem of determining the instrument constants used in the first routine, and the
Q and Q matrices used in the second routine, will be considered in this report as the
problem of calibration. The problem of determining the initial body-to-navigation-axes
transformation matrix will be referr=d to as the alignment problem. The remaining
problem of initializing velocity and position is an operational problem, which is not
within the scope of this work,

We will extend these definitions to the subject ERC strapdown ISU. Specifically, we will
delineate more detailed definitions in terms of the geometry and instruments charac-
terizing the ERC system. Section 2. 2 will treat calibration, and 2.3 alignment.
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2.2 CALIBRATION REQUIREMENTS

It was seen in the preceding subsection that calibration is defined as the determination
of those instrument constants and constant matrix transformations required in the
transformation of instrument outputs into integrals of body-axes components of applied
acceleration and angular velocity. In this section we will describe the equations in the
navigation routines which utilize the calibration constants. We will specify those
equations with the assumption that the ERC strapdown ISU is the subject sensor unit.
From that description, we can then specifically describe the calibration requirements
as the determination of the constants contained within those navigation routines.

The desired equations are directly deducible from the geometry of the ISU and the
mathematical models of the instruments. We therefore begin the presentation in this
section by describing the geometry of the strapdown ISU, followed by a description of
the accelerometers and gyros contained within the ISU, Following those descriptions
we will define the @® and Q¥ matrices. Next we will employ all of this information to
develop the desired equations; and finally we will utilize those equations in the tabulation
of the required calibration constants.

2.2.1 ISU Geometry

The ERC ISU is a strapdown sensing unit containing:

e Three vibrating-string accelerometers

e Three single degree of fireedom gyros

e  One mirror cube

®  Associated structural and electronic devices.

The strapdown ISU has been specified such that the accelerometer input axes (a k)’ the
gyro input axes ((_}_ k)’ and three mirror normals (Mk) are nominally orthogonal and
nominally aligned. In implementing the specification, there will naturally be deviations
of small angles between the supposedly aligned instrument and mirror axes. In

Figure 2-2 an exaggerated representation of those deviations from nominal is shown, It
will be assumed in this study that the cosines of the angles between supposedly aligned
vectors are equal to one and the cosines of the angles between supposedly orthogonal
vectors are equal to small first order numbers.

Additional geometry required in subsequent developments is the nominal location of the

gyro output (O k) and spin (S k) axes relative to the input axes already described. Those
nominal locations are shown in Figure 2-3.
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It is always convenient, in inertial navigation, to define, from the geometry of the ISU, a
set of orthogonal unit vectors which represent a common "body set of axes' to which all
accelerometer and gyro outputs can be referred. The definition of those body axes is
usually arbitrary; that is, any two ISU fixed vectors can be used. For the purpose of this
study we will utilize two mirror normals. The body axes for the subject ISU are defined

by

jos]

pat -1
B2=(M xM)le/lM X 2}

B (MlxM2),[M xM2|

3~

!

This definition is shown schematically in Figure 2-4.

2.2.2 Accelerometer Model

A schematic of the accelerometer is shown in Figure 2-5. The accelerometer consists
of two masses separated by a spring and supported for centering purposes by two s
(S1 and S ) nd ligaments normal to S1 and SZ' When the accelerometer is at rest or
moving w1th constant velocity, the sum of forces acting on the masses is zero. When the
instrument is accelerated, the sum of forces will adjust to cause the masses to move with
the same acceleration. Strings S1 and 82 will change in tension as a function of the com-
ponent of acceleration along the strings. (This direction is the sensitive axis of the in-
strument.) Since the resonant frequency of a vibrating-string is a function of its tension,
the frequency of strings S1 and 82 may be read and converted to acceleration along the
sensitive axis.

The math model of the accelerometer is presented on Chart 2-1. The outputs from the
accelerometer are the pulse counts, N1 and Nz, representing the number of zero
crossings from strings S1 and 82 in the time interval ta_’tb' Since the counting process
can start and terminate at a fixed time for any sample, a quantization error (represented
by Eq) of up to two counts (one per string) may occur. A fixed bias (DO) is assumed.

The entire output is multiplied by the scale factor Dl‘ The second and third order co-
efficients (D2 and D3) are extremely small,

In developing the model (see Appendix A) several assumptions were made. The most
critical are:

1. The accelerometer has negligible instrument noise.
2. The effects of terms higher than the third order are negligible.
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Figure 2-5. A Schematic Diagram of the Accelerometer
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CHART 2-

1

THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

t t, t
Joofpat - [ fidt = (N-Nj)+ Eq =D, [ (a-A)dt
¢ 2 ¢ 1 271 1, ==
a a a
t
b 2 3. .1
+ Dy [ [Dy+Dy(a-A)“+ Dg(a-A)°Jdt
X ST
a
WHERE:

a is the acceleration applied to the accelerometer
. ta sts tb is the time interval over which a is measured
®* A is a unit vector directed along the input axis of the accelerometer

] N1 and N2 are the number of zero crossings detected in ta <tst
from both strings of the accelerometer

b

® Eq is the instrument quantization error due to the fact that t a and t
do not correspond to zero crossings

b

L D1 is the accelerometer scale factor
. DO is the accelerometer bias
] D2 is the second order coefficient

° D3 is the third order coefficient

° f2 and f1 are string frequencies in pulses, second
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3. There are no cross coupling effects.
4. The strings are colinear.

2.2.3 Gyro Model

The gyroscopes used in the ERC strapdown ISU are Honeywell GG334A single degree of
freedom, pulse rebalance gyros. The gyros contain a gimballed rotor as shown in
Figure 2-6. The rotor spins at a high angular rate., The gimbal is restrained by the
gimbal bearings to rotate with respect to the case about the O axis only as shown in the
figure. Any angular motion of the gyro case about the input axis, G, will generate a
gyroscopic torque that tends to rotate the gimbal about O. A signal generator measures
the gimbal deflection. The deflection is compared at 3 3. 6 KHz rate with two equal
thresholds of opposite sign and a positive, negative, or zero pulse is generated, based
on the results of the comparison, This signal is sampled by the readout electronics and
fed to a torque generator where a torque pulse is generated to offset the deflection.

The model of the gyro is given on the accompanying chart. (See Appendix B for a deriva-

N
tion.) T 5 K 18 the net count of positive and negative rebalance torques. A& is the scale
k=1 t
factor of the instrument. The term JtN(w-G) dt is the desired information from the in-
0 =2

strument, and is equal to the integral of the angular velocity component along the sensi-
tive axis. R is a fixed bias term. The three terms with coefficients, BI’ BO and BS
are due to the fact that the center of force of the gimbal support differs from the gimbal
center of mass, causing a torque proportional to acceleration (mass unbalance effect).
Terms with coetficients Cip CSS’ CIS’ COS and CIO arise because of the deformations
of the gimbal, caused by acceleration forces that produce mass unbalance effects. The
term with QII coefficient is due to scale factor nonlinearities. The QIS term is due to
the differences of moments of inertia about S and O. The term containing J is the

effect of dynamic coupling because of finite gimbal inertia.
2.2.4 Q Matrices

In Section 2.1 we defined the QA and QG matrices as those constant matrices which
transform the integral of the instrument-axes components of applied acceleration and
angular velocity into the integrals of the body-axes components of the same vectors.

In this subsection we will specifically define those matrices.

First, the QA and QGr matrices, as suggested by the superscripts, transform, re-

spectively, the integrals of the accelerometer-axes components and the integrals of the
gyro-axes components. Second, QA and QG_. being constant matrices, transform all

2-12




TORQUE
GENERATOR

T

1

)
GIMBAL °\_ -
yy |
Tl |
-eo —-[:
ROTOR| H, v j_ 8¢
L)

SIGNAL AMPLIFIER

1 1] GENERATOR

SOV N NUONNNSIONANONNNONONONNNNANN

%

NMAONNNANNNNNNNNANNNN

M
JL |

1L

<

Model:
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S is a unit vector along the spin axis of the rotor.
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G = O x 8 is the sensitive axis of the gyro.

Figure 2-6. A Schematic Diagram of the Gyro
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CZART 2-2

THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS:

N t
A | T6 | ="
k=1 K] Yt

+ Cg@-G)@8) + Cngfa-0) @) + Cy(a-G) (@-0)

+ Qu(

N (w.G) dt + j

N

. -
. IEHBI(E-Q) + BO(§°Q) + Bs(ﬁ'_s_) + CH(gyC_})2 + CSS(§’§)2
0

d
w G)? Qg(wG) (w8) + J g (ur Qﬂdt + An + Eq

WHERE

« is the angular velocity applied to the gyro
a is the acceleration applied to the gyro
t0 sts tN is the time interval over which a and « are measured

tN - tO = N7, where Nis an integer, and 7 js the gyro sampling
period

S is a unit vector along the spin axis of the rotor

O is a unit vector directed along the output axis as defined by the
gimbal

G is a unit vector along Ox§ {that is, the sensitive axis of the gyro)

6, is the kth gyro pulse. equal to +1, -1, or O for positive, negative,
or no pulse

Ad is the gyro scale factor

R is the gyro bias

BI BO and BS are the gyro unbalance coefficients

CII CSS CIS COS and CIO are the gyro compliance coefficients

QIS and QII are dynamic coupling coefficients due to gimbal deflection
and scale factor nonlinearity, respectively

J is the angular rate coefficient

An is the effect of gyro noise over the :to, ty' interval

Eq is the gyro quantization error
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triples of vector components between the frames, not just the integrals of those vector
components. (That is, the Q matrices can be taken in and out of the integral at will,)
Therefore. we can say that QA and QG are defined by:

_ -
B | A A4
Bol =97 || A2
B A

L —3_ L - =3
1_31T G G,
Ba| =1 Q|| G2
B G

L '3._ L =3

It will be seen in Section 4 that calibration determines not QA and QG but (QA’)_1 and
(QG)'I. We therefore need to deduce the matrices from their inverses. From the
geometry presented in Section 2. 2.1 it is seen that the QA and QG matrices are approxi-
mately identity matrices, This fact makes the deduction of the matrices from their in-
verses quite simple. In the accompanying chart that deduction is presented. Note, in
Chart 2-3, that the inverses appear, at quick glance, to be orthogonal (that is the ele-
ments are "direction cosines'). This apparent orthogonality results from };)’k being
orthogonal. However C_}k and ék are not, in general, orthogonal, and therefore the in-
verse matrices are also not orthogonal.

are functions of the separation-angles hetween the unit-vectors contained within the ISU.
Even though we will not specifically present techniques for finding separation-angles, the
reader may be interested in those forms for the purpose of deducing separation angles
from the calibration-determined (QA)"1 and (QG')_1 elements.

2.2.5 Preprocessing Computations

In this section we will show how the ISU geometry and mathematical models lead to the
specific equations found in the initial computational routines of a navigation loop. Those
equations, which we call the Preprocessing Computations, include all of the constants
which must be determined during a laboratory calibration.

Referring to the flow diagram presented in Figure 2-1 we see that the initial routine in
the navigation loop is the transformation of the instrument outputs into a knowledge of the
integrals of the instrument-axes components of applied acceleration and angular velocity.
Referring to the instrument models. we see that the models represent functional rela-
tionships between the inputs and outputs of the initial navigation routine. (This statement,
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Determination of QA and QG from (QA)-1 and (QG)-1

e The calibration determines not QA and QG but (QA)-1 and (QG)'I.

° The inverse matrices have the form:

(4 -

@41 =] (A,
(a

-

3

G

.El) (G .

By (4y- By)

. §) (A3°§2)

(A

Gy

21 23
(A, -

(A3 °

CHART 2-3

=1
G\-1 .
@) =] Gy B) Gy By (G

G.*By) (G,*B,) (Gy+B
| (G37 By (G5 By) (G- By

Because of the excellent mechanical specifications on the strapdown ISU, each

of the above matrices will have ones on the diagonalg and first arder small

quantities on the off-diagonal. That is, each matrix can be written as:
I1+E

where I is the identity matrix and E is a small off-diagonal matrix.

The inverse of (I + E) (to first order) is (I - E).

The QA and QG matrices can, therefore, be written as:

1 =(4y° By -(4y" By
Q* = | -4, B 1 -(Ay By
-(43° By -(43- By 1
[ 1 -e;7By -Gyt By
Q% = |-G, B 1 -Gy By
| "(G37 By -(Gy" By b

where all elements within the matrices are found in calibration.
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of course, assumes that quantization and noise are neglected.) The mathematical model,
functional relationships are not, however, explicitly in the form: routine output = f (rou-
tine input). To the contrary, the relationships are the inverse: routine input = g (routine
output). The desired navigation equations must therefore result from an inversion of the
instrument mathematical models.

The inversion of the models is quite a simple matter. This is due to the fact that each
instrument is designed to be a linear instrument; therefore, all "nonlinear' terms are
the result of design deficiencies and therefore are quite small relative to the proportional
term plus bias, We conclude then that all "nonlinear" terms can be approximated by
functions of the instrument outputs. The following discussion shows how this is accom-
plished.

The accelerometer model (neglecting quantization and noise) has the form:

AN = Dl'l. (a-A)dt + DlDO,J' dt + higher order terms

where AN is the difference

n the nimhbar af zearn crnceinoa datn
S uie e numper ¢ Zero ¢ress S e

in rber o ing

the time period over which the integrations in the equation are made. In the following
discussions, this time period will always equal At,

As a first order approximation,

1
l@a-A)dt = — (AN - D, D_At)
- - D
1
Let us define
@-A)At = [(a.A)dt
- Ja-A)dt 1
or (a+A) = —— = _ = —— (AN - D;D_At)
-~ lat D, At

We can see that (a. A) is, from the mean value theorem of calculus, a value of (a- A)
somewhere in the time period of integration.

Referring to the second order term
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which can be written

(@- é)zAt

We see that, when the period of integration is chosen short enough that (a- A) is essentially
constant over each period, then it can be assumed that:

@ 4)® = @ A2

(This is a very good approximation, considering the fact that the coefficient of the square
term is quite small,) From all of the above statements we can therefore infer:

1 2
f(a-A2dt = (AN - D, D_At)|“ At
- = D, At °

Similarly, the cubic term can be written as

1 3
f@-a®at - |——( AN - D,D_At)|~ At

The expression for (a- A) can also be used to determine the gyro unbalance integrals from

the approximations:

Jﬁ (E' Qk) dt

[t}

JasApadt

— — —

00 1 f(i-Al)dt
f(g-gk)dt = |10 0] |[(a-Ay)dt | (See Figure 2-3.)

[‘ .
10 0] |[(@Agdt

0-1 0] [[a-Apat
Ja-spdt = |0 0-1] |[(a:Ay)dt
0 1 0f |/(a-Agdt

-

1
h «A)dt = ——|(AN), - (DD ), At
where J‘(?_- A ) (Dl)k |:( )k ( 1 O)k j|

(We have refrained from using the instrument index k until it was absolutely essential.
This served to keep the notation as simple as possible. )
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The compliance integrals are found to be similar to the higher-order accelerometer terms.
We note that all of the gyro approximations utilize the outputs of the accelerometers to
compensate for the gyro acceleration-sensitive terms.

After all approximations, we will have equations of the form:

[ (a- ék) dt f (accelerometer outputs)

g(accelerometer and gyro outputs)

Py
£
Jo)
a1
Qo
-+
I

The QA and QG matrices can then be used to find:

f[(a.B,)dt = I QA +A)dt
. (a k) T Kkt [a 1)
r . B dt = ; r . G dt
(e By 2{ Q. o (@ G))

The above statements lead to the complete set of computations, which are found on the
following chart. We will henceforth, in this document, refer to those equations as the
Preprocessing Computations. The following nomenclature is required for the understand-
ing of the Preprocessing Computations:

® (Zvy)y and (Z'7)k2 are the counts from the one and two strings of the kth
accelerometer.

e (T5) isthe countfrom the kM oy

Sig S

L Sg is the clock scale factor (the subscript 2 serves to distinguish this scale
factor from another used in calibration),

Iro
'S DJ = e

® (En%‘) is the count from the system clock. All other terms have been
previously defined.

2.2.6 Calibration Requirements

The Preprocessing Computations developed in the preceding subsection are seen to be a
function of a great number of constants. Those constants were, in Section 2. 1, defined
as the constants to be calibrated. An explicit statement of the calibration requirements
is therefore the determination of the quantitative value of the constants contained within
the Preprocessing routine. In Chart 2-5 those constants are listed. As a matter of
convenience, the nominal values, ranges, and precision requirements, where available,
are given,




CHART 2-4

PREPROCESSING COMPUTATIONS

Inputs (Zy)yy, (E7)y.;, (£),,and (Eng York=1, 2, 3

The outputs J"'tt+ at (w ‘gk)dt and _j't“m (g-I_Bk)dt (k=1, 2, 3) are given by the following
computations:
A - bl
. Pk = [(EV)kz - (EY)klA
. P§ = (ze),
_oT(s..T
. at =s(zn7)

o (eGat - P, - (R), At

o l@A)at = Ph D), - (Oy), At

. («Gy) = [(«-Gy) Bt At

. @-Ap) = LAy at’/at

. @Gy = @A)
[0 0 17][@ap)]

. @0) =1 0 0 G4
10 0|4y
0-1 0][@4a)

¢ @Sy) =10 0 -1 1@ 4,
01 0[G4y

o A6t = @Gt - (By), (a-Gy)+ (B, @-0y)-(By), @7S,) At
- (O a6 - (Ceg) @7 a

L(Cig) @G- 8,) - Cogly @+ 0@ 5,) + (Cp ), (a-Gy)(a-0,) At

: —2 R

3
K (@ 4)7at

%

1>
a
=
I

Y rens e —_— 2
“{a. - . . -
(a ék)At_ (Dz,k(g ‘ék) At (D3)

]
o,
-
-
T
[
—
(3
I
~—
jo))
=3
fl

z Q?(/‘ ‘.tt’AL((ﬁ" g; )dt

o t+At(§.§k)dt B} ?Qia “t"m(g-é,)dt
where

1 '(91' ?2) '(gl' ?3)

-(93- 1_3_1) '(93' 1_32) 1
1 -(ApBy (A By

A

* Q%=-(Ay B 1 -(ApBy)

- *B - -B 1
(A _1) (é3 _2) N
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CHART 2-5
LISTING OF CALIBRATION PARAMETERS
Accelerometer Coefficients
Name and Units Nominal Value Range Precision
Pulses D - -6
DIE:EEE_/g> 254 252 + 256 ADl/Dl—-ZXIO
-1 -1 _ -5
D, (g) 10 0+2x10 ADj = 7x10
Dz(g/gz) 0 -13x1078
D,(g/5") 21x1078 (26 + 28)x 1076
(4, B 1 0
(ék ] 5{/) 0
Gyro Coefficients
Name and Units Nominal Value Range Precision
Ad(deg/pulse) 3.3x 107 A(a®)/a6=10"4
R(deg 'hr) 0 =2 AR =0.005
BI(deg/'hr/g) 0 =1
B,(deg 'hr/g) 0 =1
Bq(deg ‘'hr,'g) 0 =1
C(deg/hr/g?) 0 =0, 04
Cgg(deg /hr/g?) 0 -0.04
Cig(deg hr/g?) 0 20,04
Cogldeg/hr/g?) 0 -0.04
CIO(deg/hr/gZ) 0 negligible
Qqrthr/deg) 0
de rad 2
le(i) (2 4
hr sec
Jihr) 3.7x1077
G, " B.) 1 0
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Note that a great number of the constants have a nominal value of zero. Note also that
the accelerometer bias term is the only term which has a nominal value which appreciably
affects an instrument output (that is, affects the output over and above the effect of the
linear term). The relatively large value of the bias term accounts for the bias being
utilized in the preceding subsection as a part of the higher-order term approximations.

Only the precisions of the bias and scale factor are given. The scale factor precision is
presented as a relative requirement (ratio of uncertainty to magnitude). The bias
precision is presented as an absolute error. It will be shown in the trade-off document
that the errors in each of the other terms act as either a scale-factor-like or bias-like
error. Therefore, all precisions are inferred from either the scale factor or bias
precision.

2.3 ALIGNMENT REQUIREMENTS

In Section 2.1 alignment was defined as the initialization of the matrix which transforms
from an ISU-fixed frame of reference (body axes) to a navigation frame. In this section
cur purpose is to explicitly state the requirementsg for determining that matrix, Three
alternative techniques will be presented. The definition of the three alignment techniques
will be presented in Section 2.3.1, The alignment requirement associated with each
technigue will be found to be the measurement of either the body-axes or earth-axes
components of two system vectors. In Section 2. 3.2 the geometry associated with the
alignment techniques will be presented. The explicit functional form of the alignment

matrix for all three techniques will be delineated in Section 2, 3. 3.

2.3.1 Definition of Three Alignment Techniques

Alignment has been defined as the initialization of the body-to-navigation-axes transfor-
mation matrix. For the subject ISU, the body axes (I_Sk) are defined by the normals to
two ISU-fixed mirrors (see Section 2.2.1). For the purpose of this study, we will assume
that the navigation axes are aligned with a set of local-level earth axes (Ek), where

E, is directed up (along the line of local gravity)
E, is directed east (normal to the local meridian)

Ej is directed north (normal to E; and E).
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(Throughout the text we will, at times, also refer to the earth axes as U, E, and N, where

v =E
E = E
N = Eg

We can now more explicitly define the alignment problem as the determination (at some
time, say t) of the 3x3 orthogonal matrix T, where T is defined by:

E, U [By
Exl = |E} = |T||B
Eg N Bg

There are numerous techniques for determining the elements of the matrix T, Each
technique considered in this report is based upon expressing the matrix functionally in
terms of the components of two vectors (which are known, in an operational situation)

in both the body- and earth-fixed frames. The typical operational situation would be

an earth-fixed orientation of the ISU. Assuming that the operationally available meas-
uring devices to be used during alignment are any combination of three gyros, three
accelerometers, or two two-degree-of-freedom autocollimators, then the vectors which
can be used to functionally define the T matrix are:

~ . 1 PR Anmstmad 3 A Anw
The unil mirror normals Mq and Mo, which can be micasured in the carth frame

by the autocollimatorsand are known in the body frame because they define the
body frame

® The local environment vectors g and WP (""gravity'™ and earth rate), which can
be determined in the body frame by thé accelerometers and gyros and which are
known in the earth frame because they explicitly define the earth frame; that is,

E, =1
Ey = (WxU)/|WxU|
E3 = Ux(WxU)/|Wxy|
where U = g/|g|
and W = wB/|o"|

The T matrix can be expressed in terms of the components of any two of the four above-
mentioned vectors (Ml, M,, g, and w ) but, as a contract requirement, only the
following three combinations are of interest in this study:

*See Section 3.1.1 for a definition of "'gravity'’.
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[ Ml and MZ
° 1\_/11 and g

°* g and QE.

The names of the techniques which implement the use of the components of these three
vector combinations are, respectively:

® Mirror Alignment
o Level Alignment
¢ Gyrocompass.

In the next subsection we will present the geometry of the four vectors (1\_/11, M,, 8,
and QE ), and in the following subsections we will present the explicit mathematical

relationships between the components of those vectors and the elements of the T matrix,

2.3.2 Alignment Geometry

In the preceding subsection we described alignment in terms of the determination of the
components of two vectors in both the body- and earth-fixed frames. We chose, as
alternatives, the vector combinations

L _1\/_[1 and 1\£2
® _1![1 and g
¢ gandw”.

In this subsection we present the geometric relationship between the four vectors which
are considered in our three techniques,

The required geometry is shown in Figure 2-7, The following comments explain the
notation:

. U is a unit vector directed up; that is U = g /Igl .
. W is a unit vector directed along earth-rate; that is W = _E/l gEl
. &1 and @3 are, respectively, "azimuths' of the one and two mirror

normal, as determined by an autocollimator.

¢ 61 and 63 are, re

respectively, the "zeniths' of the cne and two mi
normal, as deter

vaal LT alaval AL Saa

Dec
mined by an autocollimator,
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Figure 2-7. Earth and Mirror Axes
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. A is the angle between U and W, which we will refer to as "local latitude''.

. Pis a unit vector directed along the projection of the one mirror normal
into the local horizontal plane,

2.3.3 The Three Functional Forms of the Alignment Matrix

In this subsection we present the explicit mathematical relationships between the elements
of the T matrix and the measurable body or earth referenced components of

° M; and M, for Mirror Alignment
L M1 and g for Level Alignment
. g and wE for Gyrocompass

These functional relationships are presented on the three accompanying charts. We will
not, in this subsection, meticulously derive the relationships; but will instead present

sufficient information such that the derivations are obvious. Let us consider each chart
in turn.

Mirror Alignment

This derivation is quite easily explained. In Section 2.2.1 we defined the body-axes as:

B, = M

-1 —1
(M) x Mp) x My
1}2 =
| My x M, |
(Mlx 1\_42)
1_3_3 =
| My x M, |

Therefore any vector, say U, can be written in body coordinates as

U- (M xM,) xM,; U (M xM,)
U= (@U-M)B , By + ——= B,
| Myx M, | | MyxM, |

and, after substituting the identity

U = ExN into the last component
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CHART %-6
MIRROR ALIGNMENT MATRIX
Inputs 91, 05 62 and %
From these quantities the alignment matrix is given by:
F' ] - B
(UM (M x U)- (M x My) (E x N)-(M; x My)
=¥
My x My | M x My |
(M;XE)-(M; x M,) (NxU).(M, xM,)
T _ (E-M,) =172V 02 = =TV 2
My x My My x M, |
(M;xN)'(M, xM,) (UXE)'(M,; XxM,)
L] N IMIXMZ‘ 1\_/11X1\_/_12l i
where )
e =11 - . 211 2
IMx M= 0 - (e MR
(1\_41 Mz) = (Ml' I_J_)(Mz' I_J) + (Ml' g_)(l\_/_[z' _E_) + (IY_II' g)(l\i[z' §)
(Il’l\_/_[l) cos 64 (g' l\_/[z) cos 62
(E'My) | = | cos @, sin8, (E:M,)| = |cos@, sinf,
_(_1!'1\_41) LsinOt1 sin 8 1 ’ (N- 1![2) sin &, sin 6,

An optional technique might utilize the value of |I\LI1 X le from a previous alignment
thus eliminating the aforementioned dot product and square root operations.
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and interchanging the dot and cross in the secand component, we have

|0t (M) Ex )" (MyxMy)

U= [LUuM)iB,+
i e |

l Myx My | 2

The three bracketed quantities are the elements of the first row of the T matrix. In the
Mirror Alignment chart we see those elements in the first row, and similar elements for
E and N in the second and third row. The relationships between those elements and the
azimuth and zeniths as determined by optical equipment are listed below the matrix. The
azimuth and zenith relationships are obvious from Figure 2-17.

Level Alignment

This derivation is quite simple if one separates the problem into three parts by defining
matrices (Tl’ T,, and T3 say), where the three matrices are defined by

E, U

Eal = |T1| |B xU
E; B

U ] My ]
Pxu| = |Ty| | U

r J M,xU
R L1 LFtRE

M, B,

v = |T3 By
MyxU | | | Bs

Obviously T = T1 Tz T3.

The three matrices shown in the Level Alignment chart are Ty, Ty, and T4 respectively.
The derivation of the T, matrix is obvious from the definition of P in Figure 2-7. The
derivation of T2 is based upon the fact that

i
fe!

xU=(M;xU)/| M, xU|
—17 =1 =1T =y

and P=Ux(M;xU)/|M;x U]
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CHART 2-7
LEVEL ALIGNMENT MATRIX
Inputs (g- By), (g- By), (g By) and oy
From these quantities the alignment matrix is given by:
o T r ar n
ﬂ 0 0 0 1 0 0 0
. 1
T =10 sin®, cosa, 0 0 IM1X9| (U:By) (U-By) (U-By)
1 (1_\_’[1 U)
where
* (Mf U) =(U- 1_31)
: 2.1/2
] II\LIIXQ|= Ll - (M1°H J
* (U-BJ={gB)e
. g= [ B)%+ (g By?« g By2 /2

An optional technique might utilize any of the following additional inputs:

® The zenith angle (61) of mirror one might be utilized to find (Ml
(Ml-U) = cos 6,

® The magnitude of gravity (g) might be supplied from a local survey. This piece
of information can be utilized to reduce the number of required accelerometers

to two.
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The derivation of T3 is based upon the fact that

=
il

B,

U = (U-B;) B) + (U By) By + (U- By) By

M;xU = ( M, xU- 91) B, + (MIXI_J' §2) By + (B_/IIXI_J' 123) Bg

The third identity becomes, after substituting M, = B;

Below the matrix expression we see the obvious relationships between the elements of the
T, and T4 matrices and the body components of g(as determined by accelerometers).

Below those relationships, we see alternate methods that utilize the zenith cosines and
sines from an optical measurement; and ¢ from a survey.

Gyrocompass

In this derivation we express the T matrix as a product of two matrices (T 4 and T5 say)
where T 4 and T5 are defined by:

BN C w
Byl = [Ty u
E wWxU
L. “‘U " _J_— - 4
[ w] R 131_
ur = |Ts By
(WxU| L JL Bs |

That separation is shown on the gyrocompass chart. The matrix T 4 is obtained from the
identities
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CHART 2-8
GYROCOMPASS MATRIX
E K E
Inputs (g- By) (g- By) (g+ Bg) (w ™+ By) (@™ By) and («™ By)
From these quantities the alignment matrix is given by:
r I =
0 1 0 (W-By) (W-By) (W-By)
1
T |= 0 0 lwxgl (U- 9_1) (I_J_']_B_z) (U 5.3)
1 (W-U) ,
wxu| ~Twxu| © (W x U)+(By x Bg) (WxU)-(ByxB) (Wx U)- (B xBy)
- 4 L - - - = d L ]
where
¢ (V_V ° [_I) = (‘_N‘ El)(g‘ 1_3_1) + (w . Ez)(!-_Ja Ez) + (W ° §3)([_J‘ _B_3)

=
i

1=
]

(1 - (‘E.U)Zjl/z
f{ E n \/ E
(w™

B = (" B/
b (g°§k) = (g°§k)/g

1)
. g = (g B)?+ g By?+ (g By? L2

An optional technique might utilize any of the following additional inputs:
® The local latitude (A) might be utilized to find (W-U) from

(W-U) = cos A ’

® The magnitude of gravity (g) might be supplied from a local survey.

¢ The magnitude of earth rate (wE) might be supplied from a local survey.

A use of all additional inputs could reduce the number of necessary instruments to three
(either two accelerometers and one gyro, or one accelerometer and two gyros).
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The rows of the T5 matrix are obviously made up of the components of W, U, and WxU.

Below the matrix expression is found the relationships between the elements of the T 4 and

T5 matrices, and the accelerometer and gyro determined hody-axes components of g

and wE. Below those relationships is found a discussion of alternate techniques utilizing
E

g w and ).
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SECTION 3
SYSTEM DESCRIPTION

The calibration and alignment requirements far the NASA/ERC strapdown inertial
sensing unit were presented in Section 2. The calibratjon requirements were defined

as the determination of the inertial instrument mode} ¢onstants and the elements of

the matrices which transform between the instrument and body frames of reference.
Alignment was defined as the real-time initialization of the body -to-earth transformation
matrix., The alignment requirements were defined as the measurement of the body
and/or earth-frame components of two system vectors, Three alternative choices of
sets of vectors were introduced, These alternatives characterized the three alignment
techniques: Mirror Alignment, Level Alignment, and Gyrocompass, As a necessary
aid to the satisfaction of the calibration and alignment requirements, various pieces of
laboratory equipment are needed. It is also necessary to understand fully the nature of
the kinematic environment in which the equipment and ISU are iocated. In this section
our purpose is to describe that equipment and enviranment, beginning with their relation-
ships with the problems of calibration and alignment,

3.1 FUNCTIONAL DESCRIPTIONS OF CALIBRATION AND ALIGNMENT

The following paragraphs describe the functional activities of calibration and alignment,
(Section 3. 1.1 discusses calibration, and 3. 1.2 discusses alignment,) These functional
descriptions serve as a definition of the required inputs to the calibration and alignment
evaluations which come from sources other than the ISU.

3.1.1 Calibration

In the following discussion we indicate the functional requirements for determining the
calibration numbers. Our discussion will be quite general, the major purpose being to
introduce the reason why the equipment described in subsequent subsections is required,

As an aid to our presentation, we find it useful to compare the ERC laboratory calibration
with an '"Tdeal Calibration'. This comparison serves to indicate the compromises which

are necessary in defining an operational calibration laboratory.

On the following chart (entitled Calibration) we present two calibration functional diagrams.
We refer to the two techniques represented by those diagrams as Ideal Calibration and ERC
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CHART 3-1

CALIBRATION

IDEAL CALIBRATION (OR STANDARDIZATION)

ISU outputs as a
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ment inputs A of the ISU
into both
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standard
v Standard The integral of
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Non Real-Time
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—_———— A
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In Real Time
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Time

Store

E
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1ih +3
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3-2




Laboratory Calibration. The Ideal Calibration diagram represents the manner in which
calibration would be accomplished if an unlimited amount of time and money were avail-
able. The ERC Laboratory Calibration diagram represents the manner in which the
calibration will be accomplished under more realistic constraints.

If one wished to calibrate a "black-box" (ISU) ideally, he would operate in the manner
indicated in the Ideal Calibration functional diagram. Subsequent to the development

of an ISU, whose outputs are designed to vary over a range of kinematic environment
inputs (2 and 9), one would wish to determine the quantitative relationship between the
ISU outputs and that environment., However, that environment exists only conceptually,
and not quantitatively, until a device is available which is defined as the measurer of these
kinematic quantities. That device is referred to as the ""Standard" measuring device,
With the Standard available, it is then possible to calibrate the ISU by placing both the
ISU and the Standard in the same environment and mapping the output of both over the
range of the kinematic quantities which are considered to be significant. This mapping
would take the form of a table of ISU and Standard outputs over the required operational
range of the ISU. The mapping would necessarily be accomplished in a frame which

gharacterivnc tho TQTT and ig Imawn ralati

~ n tn tha Qiandnnd -
STID LT AU R X0 NDUAUW L LT iaiaLivVe L

T ~istn anoon $lad o Loanm oo o
U Ui plaliukls u, L1l Ul LanT, LIS 1lalllc

will be the body axes as defined by the ISU mirror normals.

We see from the aforementioned statements that calibration is nothing more than the
implementing of the requirement that the ISU behave as the Standard would under the

same kinematic conditions. Thus, after calibration the ISU will have been "'standardized'.
Subsequent to the standardization, it is assumed that the ISU can measure the kinematic
environment, as the Standard would under the same conditions. This is accomplished by

a transformation of the ISU outputs into a measure of the environment by use of the mapping
information,

This is all rather interesting but not, operationally, very feasible. First, such a Standard
is not available in the laboratory, and even if it were, time would not allow for a mapping
over the entire operational range of the kinematic inputs, Secondly, in the case of applied
acceleration, the typical operational range of the kinematic inputs cannot be easily
generated in the laboratory. (A centrifuge would be required for accelerations higher

than one g.) Thirdly, it is not always feasible to have even a substitute for the Standard
operating at the same time as the ISU. All of these problems explain the deviations of

the ERC Laboratory Calibration from the Ideal Calibration. Before elaborating those
differences, a description of the ERC environment is necessary.
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The kinematic inputs found in the ERC laboratory include:

1) The applied accelerations and angular velocities characteristic of any point
on the earth's surface

2) The local deviations from those accelerations and angular velocities due to such
things as earthquakes and cultural noise

3) The generated environments, caused by the ERC test table.

The first category includes earth-rate and the applied acceleration (normal-specific
force) which negates the acceleration due to gravity in a "static' orientation relative

to the earth. (This acceleration is often confused with gravity. It is, on the average,
equal in magnitude and opposite in sign to gravity. The very common convention is to
refer to this applied acceleration as g. We will, in the remainder of this document, also
refer to it as g. Note, however, that we always direct g away from the surface of the
earth.) The second category will be referred to as '"moise'. The laboratory test table
(see Figure 3-1), mentioned in the third category, has a motor-driven capability of
rotating at speeds up to several thousand earth rates. Such rotations will develop angular

vn]nr-n‘v and nnonlnr-vnlnrnfv related accelerat

attached, during calibration, to the table).

ute tn the TQTT {thn TQTT hn- a T
S i

n L ated
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“wy e

As suggested in the discussion of the Ideal Calibration, it is necessary that an independent
measure (Standard Output) of the laboratory environment be available in order that
calibration can be accomplished. This independent measure, even when a substitute for
the Standard is used, should be accomplished at the same time that the ISU is yielding
outputs. In the case of the angular velocity of the test table, an independent, real-time
measure will be accomplished through the use of the output of the test table resolver.

The measurements of the g and _c:‘E
prior to calibration and "'stored' for use during calibration. The storage of the direction
of those two vectors is evidenced in the location of such things as optical lines, resolver

vectors are, however, accomplished at some time

zeros, etc., and the magnitudes by storage of numbers in a computer memory. Informa-
tion about the noise is stored in the form of graphs showing characteristics such as
power spectral densities. Because g, EE, and noise are not measured in real time, it
is assumed that their behavior is the same at the time of calibration as it was at the

time of measurement; therefore, they can be considered a good approximation of a real-
time measurement,

To this point we have described the manner in which the Standard output is evidenced in

the ERC laboratory. We require only one more statement, in this presentation of the
calibration functional activity, about the substitution of ERC Laboratory Calibration for
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Ideal Calibration. The Ideal Calibration was described as a standardization over the
entire range of inputs. Fortunately, in the case of Laboratory Calibration, some of the
standardization has been accomplished by instrument designers prior to the placement
of the accelerometers and gyros in the ISU. A great deal of time and effort has already
been devoted to the development of a functional relationship between the output of the
instruments and their environment inputs, Those functional relationships are referred
to as mathematical models. As seen earlier, the instrument models contain many con-
stants. Because of the availability of the models, it is only necessary in calibration to
map a number of environments equal to the number of calibration constants for the de-
termination of those constants. It is assumed that a knowledge of the models, and the
model constants, serves to interpolate the mapping between the chosen environments.

In this subsection we discussed the independent measurements required as an aid to
calibration. In Section 3.2 we will discuss how those measurements are specifically
developed as inputs into the determination of the calibration constants.

3.1.2 Alignment

In Section 2, 1 alignment was defined as the initialization of the matrix which transforms
from an ISU-fixed set of axes to a navigation set of axes. In Section 2.2 the ISU-fixed
axes were defined by two ISU-fixed mirror normals, and in Section 2. 3 the navigation
axes were defined as an earth-fixed, local-level frame of reference. Further, in

Section 2. 3, three alternate mathematical forms of the alignment matrix (T) were derived.
Each form showed a requirement for a different set of optical or inertial-instrument
measurements as an input into the quantitative determination of the alignment matrix.

In this section we will discuss the techniques for determining each set of inputs.

As an aid to this disucssion we present in the accompanying chart, entitled "Alignment
Functional Diagrams', a schematic of each of the three alignment techniques. In the
remaining paragraphs of this section we discuss, in turn, the contents of each functional
diagram,

Mirror Alignment

The routine labeled Alignment Matrix Computations represents the computations described
in the Mirror Alignment Chart found in Section 2.3.3. As shown in Section 2. 3.3 those
computations require, as inputs, the optically determined azimuth and zenith of both the
one and two mirror normals. (In practice, the actual optical measurements might be
angles other than the azimuth and/or zenith angle. It is always an easy matter, however,
to convert the actual measurements into the required azimuth and zenith,) The optical
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CHART 3-2

ALIGNMENT FUNCTIONAL DIAGRAMS
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measurements will be manually transferred to the matrix computation routine, which will be
part of a digital computer program in the ERC facility, Because optical measurements are
extremely accurate by design. we do not include in the functional diagram any data-filtering

function.

Level Alignment

The second functional diagram represents the Level Alignment procedure. The Alignment
Matrix Computations indicated in the last block in the diagram represent the computations
found in the Level Alignment chart described in Section 2. 3. 3. That routine requires, as
inputs, the body-axes components of g and the azimuth of the one mirror. In Section 2,3 it
was mentioned that the body-axes components of g will be available as the result of acceler-
ometer measurements and the azimuth of the one mirror as an optical measurement. At the
left side of the diagram we see the input of these measurements. The optically obtained
azimuth goes directly to the matrix routine (as it did in Mirror Alignment). The accelerom-
eter inputs, however, will require further processing, since they will be in the form of

three digital pulse counts.

We saw, in Section 2.2.5. that the Preprocessing Computations convert such counts into
integrals of body-axes components of the applied acceleration inputs to the accelerometers.
However, those computations assumed no quantization and instrument noise. Therefore,
the transformation of the outputs of the Preprocessing Computations into the desired
body-axes components of g would require four additional operations in order to accomplish
a good estimation of 5'§k . These are:

inti intnoral At
Niaiiln 10 i Cglasr Buipu

ftl« P“n«“nnnﬁﬁ:“n (VA anname b
] A compensation for instrument quantization
[ A compensation for instrument noise

® Separation of g from random environmental accelerations.

If the ISU were to be in a stationary orientation relative to g during alignment (that is, if the
accelerometer input were a constant g acceleration), the first operation would be simply a
division of the Preprocessing output by the total time of integration (say At). Additionally,
the compensation for instrument quantization could then be accomplished by simply waiting
sufficiently long such that the quantization residual would be arbitrarily small. However,
the ISU at the ERC facility will not be in a constant g environment. Due to such things as
local vehicle motion, personnel movement, etc., the ISU will be, in fact, in the presence of
the nominal local g plus ''noisy' vibrations. If some a priori knowledge of that noisy envi-
ronment is available, it is possible to accomplish some of the aforementioned compensations
by the development of mathematical filtering operations on the "Preprocessing'' outputs.
Those mathematical operations are presented in Chart 3-2 as the Estimation Matrix Com-
putations and Estimation Routine. The former involves the computation of constants prior
to the actual alignment. The input to those computations is the a priori noise information.
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The Estimation Routine represents the on-line operations on the Preprocessing outputs. The
outputs of the Estimation Routine are the required estimates of the body~axes components of g.

The Preprocessing routine has been completely definea in Section 2.2.5, anad the Alignment
Mairix Computations have been defined in Section 2, 3. 3; hence, the development of the
alignment techniques presented in Section 5 of this report will be preoccupied with the
Estimation Matrix Computations and the Estimation Routine. In Section 3.2.2 we will
present a discussion of the a priori noise information which is required as inputs to the
estimation routines described in Section 5.

Gyrocompass

The third functional diagram in Chart 3-2 represents the operational gyrocompass pro-
cedures. The Alignment Matrix Computations shown in the diagram were presented in
Section 2, 3.3. Required inputs are the body-axes components of g and c_u‘E. At the
left-hand side of the diagram we see the inputs of accelerometer and gyro readouts
required for the determination of the body-axes components of g and c_cE. In the preceding

section there is a discussion relating to the transformation of the accelerometer outputs
or

into an estimate of the body-axes components of g. This discussion

algo annlieg tn Guro-
algo apnlieg 10 ro

compass with the following modifications:

In Gyrocompass the Preprocessing computations as presented in Section 2.2.5
will be used entirely, whereas the Level Alignment uses only the accelerometer-
related computations.

® The estimation routines will operate on both gyro and accelerometer data.
3.2 ENVIRONMENT MODEL

In the preceding discussions we showed that independent environment imeasurements are
required for calibration, and a priori noise information is required for alignment.

We indicated the manner in which that information is available at the ERC facility. In this
section we will show specifically how the required measurement information is made
quantitatively available to the calibration and alignment com:putational routines.

The reference environment information takes on different forms, and therefore can be
discussed independently. First, there are the stored ¢ and &‘E vectors which must be
expressed in terms of body-axes components for calibration purposes. There is the fT
vector (angular velocity of the test table), which must also be expressed in body-axes
components. We will refer to these three vectors as the deterministic environment, We
will show in Section 3.2. 1 how the body-axes components of the deterministic environment
are obtained as a function of test table gimbal angles. The remaining environment inputs

have been referred to as random noise. They will be described in Section 3.2.2.

3-9



-1-----_-..---'-

3.2.1 Deterministic Environment

E

The deterministic environment is made up of the three vectors g, «™ and 'LUT, which

are assumed known in frames well surveyed in the laboratory. Our purpose in this
section is to show how those vectors are transformed from the laboratory frames into

ISU body-axes components. The transformation will be accomplished through the use of
quantitative measurements taken from both the laboratory test table and the system
autocollimators. We begin our discussion (in 3.2, 1. 1) by describing the geometry of those
pieces of equipment. We then define the transformations between the many rigid bodies
making up the equipment. Finally, (in Section 3.2. 1. 3) we will develop the operational

transformation of the deterministic environment into body-axes components.

3.2.1,1 Laboratory Geometry

The geometry of the test table and autocollimators is the geometry which enables us to

E T

transform g, «™, and «” into body-axes components in the ERC laboratory. In

Figure 3-2 we present a schematic of this geometry. This figure is a repeat of Figure 3-1,
with the addition of the defined laboratory frames. Chart 3-3 presents the definitions of

tha framana i}\dicf)"nﬁ in Picurn 2.9 A fow pAammant

n 25 o 4
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understanding of Figure 3-2 and the chart containing the definitions of the frames.

® All frames are defined by orthogonal unit vectors directed along the frame axes.

® The Sk frame is not explicitly defined in Figure 3-2. The explicit definition
will depend upon the (at this time) unknown geometry of the autocollimators.
(The lack of an explicit definition has, however, proved to be no burden in the
work that follows.)

®  The body axes are not shown in Figure 3-2, because their relative orientation
depends upon the manner in which the ISU is attached to the inner-axis rigid
body.

® The Fk frame will be required to line up with the Ex frame, This alignment
will naturally be with the laboratory frame, which, in turn, is thought to be
coincident with the earth axes defined by g and _u_-‘E, We will see in Section 4.4.4
that this alignment will have to be corrected periodically by the use of bubble
levels.

Each adjacent pair of test table frames is assumed to have a common axis.

®  The four test table rotation angles are defined as #;, ¥y, ©3, and %, as
shown in Figure 3-2.

¢ The test table orientation shown in Figure 3-2 is the zero orientation — that is,
the orientation when all resolvers yield a zero output.

entire calibration.
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CHART 3-3

DEFINITION OF FRAMES

LABORATORY FIXED FRAMES

* EjEyEg
* 515 8
¢ E FyFy

TEST TABLE FRAMES

* F)F, Fy
o T)Ty Ty
* Ry Ry Ry
. 919293
e L L I

ISU FIXED FRAMES

e L L I

* ByBy By

A triad of unit vectors directed up, east, and
north, respectively

A triad of unit vectors defined by the two optical
lines of the autocollimators

A triad of unit vectors fixed to the base of the
test table

A triad of unit vectors fixed to the base of the
test table

A triad of unit vectors fixed to the body con-
taining the trunnion axis

A triad of unit vectors fixed to the body con-
taining the rotary axis

A triad of unit vectors fixed to the body con-
taining the outer axis

A triad of unit vectors fixed to the body con-

P - . &«
taining the inner axis

A triad of unit vectors fixed to the body con-
taining the inner axis

A triad of unit vectors defining the/body axes
as defined by the mirror normals (see
Section 2.2.1)
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3.2.1.2 Definition of Transformations

Let us choose the Ik and Ek frames for our example. The relationship between the unit
vectors of the two frames is given by:

Ry T

R 1
) RT

Ro - T T

Rg I3

where a multiplication of the kth row of the 3x3 matrix TRT with the '_I‘j column represents

Bk expressed in the T. frame. If X is any vector known in the T, frame and one wishes
to express that vector in the _P_tk frame, we dot the above definition with x, yielding:

(E'Bl) ()—{.Il)

(x-Ry) | = |TVT|| (x+ Ty

(x Rq) (x- Ty
L . L JL <

If, further, we wish to transform to the Ek frame, we have:

(x-F) (x+ Ty (x- Ty

x-Fy | - TFR| | ¢RT (x-Ty) | = TFT | | (x. T)

(x+ Fa) (x+ Tq) (x+ Ta)
L= =3 L JL JbL= =3 L JL= =93]

and so forth.

3.2.1.3 Operational Transformations

With the geometry information now completely described, it is possible to show how

g, t:‘E, and gT are transformed into body-axes components. The accompanying chart
shows how that transformation is accomplishea. Note that the chart specifies that the
test table gimbal angles will always be used in determining the transformation, instead
of autocollimator surveys. This is purely a matter of convenience. It certainly would
be cumbersome to survey via the autocollimators over the 47 steradians in which the
mirror normals can be located. Besides, the test table was designed to accomplish
the necessary transformations. Note that the autocollimators are a.bsolutelylf3 iassential
T

for one very important operation, namely
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CHART 3-4

T

Transformations of L_qE, g and «  into

Body Axes Components

During calibration there is a requirement for the transformation of u_)E, g and (£T into
body axes components. Gravity and earth rate are vectors explicitly known in the Ek

frame and w” is a vector explicitly measured in the k, frame. The body axes com-

ponents of these vectors can, therefore, be written:
(" By =BT} o B,
_ BE
€ B) =TTy g
T _ BR T
(«"B) =PTy" w R,

BE BR

The matrices T and T are, therefore, required. These matrices, as a matter of

convenience, will always be found as a function of test table gimbal angles. Therefore:
~BR _ ~BI IO .OR
1 =1 1 1

and TBE - 7BI TIO TOR TRT oTF o FE

T

BI

The matrix T is a constant which must be found from an initial survey (see Section

4.4.1). The remaining matrices can be seen from the previous definitions to be:

0 1 0 | 0 1 o |
T = Jce, 0 -spy (TR = cey 0 -sey
;S¢4 0 _CC‘L _—Sc3 0 -Ccﬂ
0 1 0 | 0 1 0|
(TR | co, 0 -sey (TTF1=|Co; 0 -se,
|-S75 0 ~Coy | -S5 0 -Cay|
(1 0 o
(TFEv2lo 1 0
0 0 1

(Note, the frames are defined so that each matrix has the same form.)
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3.2.2 Random Environment

The laboratory test environment introduces a random translational and rotational "noise™
input. In describing the noise inputs, we will utilize the worst-case model, Namely, the
translational input and angular input are assumed to be independent, and the components
of the random input vectors are assumed to be independent,

The random translational inputs about the up-down, east-west, and north-south axes

have been assumed to be statistically independent and identically distributed. Each input
has a power spectrum illustrated in Figure 3-3.* It follows that the translational motions
along any three perpendicular axes are uncorrelated and have the spectrum given in
Figure 3-3. The nominal input (local gravity) is assumed to be the long-term average
input. Assuming ergodicity of the expectation, the translational inputs have zero expec-
tations. The random translational inputs do not produce a significant output from the
gyros.

The random rotational input produces a rotation about an axis in the horizontal plane.
The rotation about the vertical axis can be neglected, The random angular inputs about
the east-west axis and the north-soith axis are btaububauy Luut:ycuut:m, and each ha
the power spectrum illustrated in Figure 3-4. These inputs are assumed to have zero

expectations.

The spectra given in Figures 3-3 and 3-4 are the basis of numerical computations involving
environment noise. The selection of the '"Recommended Alignment Techniques™ in

Section 5.7 assumed an environment as indicated in Figures 3-3 and 3-4. The alignment
processing techniques derived in Sections 5.4 and 5.5 use the power spectra of the
translational and rotational noise inputs but do not depend on the specific numbers given

in Figures 3-3 and 3-4.

3.3 HARDWARE DESCRIPTION AND INTERFACE

The material presented to this point has been introductory in nature. That is, all dis-
cussions were either related to the detailed statement of the calibration and alignment
problem, the definition of terms, the description of necessary equipment, or the descrip-
tion of the laboratory environment. In this section we will complete the presentation of
introductory material by covering two descriptive tasks which aid in the understanding

of the calibration and alignment development in Sections 4 and 5 and the operational

* Spectra data is given by H. Weinstock in ""Limitations on Inertial Sensor Testing

Produced by Test Platform Vibration", NASA Electronics Research Center,
Cambridge, NASA TN D-3683, 1966.
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ANGULAR DISPLACEMENT POWER SPECTRUM
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procedures presented in the Laboratory Procedures Manual, First, there is laboratory
equipment which is necessary for the implementation of calibration and alignment pro-
cedures and which has not yet been described. Second, the laboratory equipment has not
been presented as a system as a whole, with all of its interconnections. In this section
the description of that equipment and interface will be accomplished through the use of

a system diagram,. In Section 3.3.1 that diagram is introduced but without the lines
denoting the equipment interface. In conjunction with the introduction of that diagram,

we will present brief descriptions of the equipment which each block in the diagram
represents. In Section 3. 3.2 the useful interfaces between all equipment will be presented
in tabular form.

3.3.1 3System Diagram and Equipment Description

The master system flow diagram is shown in Figure 3-5. This diagram will be used as

an aid in the Laboratory Procedures Manual to describe the system activities during
various phases of calibration and alignment. In those applications of the diagram, interface
lines will be added to indicate specific modes of operation. Data flows are indicated by

narrow lines; dynamic or inonitor interfaces are indicated by wide lines. A brief descrip-

tion of each of the boxes represented on the master system diagram , in Figure 3-5, follows:

Input/Output Console — The input/output console consists of the equipment that provides
a manual computer interface. Included in the input/output console are: computer control
panel, keyboard and typewriter, paper tape reader and punch, and the display panel.

Operator — The operator in this system must perform many of the tasks of control and
data transfer. The box "operator" includes not only the person(s) directing the laboratory,
but also his worksheets, instructions, and notes.

Systems Control and Monitor — This box represents the equipment, capability, and
activity used to monitor and control the system during calibration and alignment.

Frequency Counters — Six frequency counters are available for use in calibration to
measure instrument output. These counters measure the number of counts on one pulse
train for a fixed number of counts on another. One of the two trains may be a difference
train formed from two inputs. The frequency counters are used in calibration, because
they can read the leading edge of one pulse train and thus substantially reduce the
quantization error relative to the use of the computer registers.

Auxliary Data Sources — These include data sources available to the operator but not
sufficiently well defined as equipment or measuring devices to be represented individually

3-18
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Figure 3-5. Laboratory Flow Diagram
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oa the system flow diagram., Examples of these sources are bubble levels and survey

information on the magnitude of g and c_uE.

Autocollimators — The two-degree-of-freedom autocollimators are available to measure
the earth-fixed coordinates of the ISU mirror normals.

Resolvers — These resolvers measure the orientation of the test table. The angles 2P
¢3, and ®4 are static resolver readouts on the trunnion, outer and inner axes of the
test table., The angle @2 is a rotary axis readout which can be used in either a static
or dynamic mode.

Master Oscillator — This is the central timing source of the system. The master oscillator

includes countdown circuitry.

Gyros, Accelerometers — These are the instruments contained within the strapdown ISU
(see Section 2,2).

- a0 -~ I, ] \ K P n a ey en A NAaraNg
Interface Eleclronics Unit (IEU)” — The IEU allows the comput

inertial instruments and timer. The IEU contains accumulating registers ior eacn oi ine
inputs shown in the diagram and the capability to periodically interrupt the computer to
allow for sampling and resetting (without loss of data) of each of the registers.

Computer* — The computer schematically indicated in the system diagram is the laboratory
mHoneywell DDP-124. Other portions of the data processing shown may, however,
be performed on other computers at the discretion of the programmers and operators.
Blocks shown within the computer represent functions used in both calibration and align-
ment, Shown are programs to input and output data from and to the console, a program

to input data from the IEU, and memory buffers for input data and output data (the results
of computations). Space has been left within the computer block to allow representation

of the various data processing tasks.

3.3.2 Equipment Interface

Figure 3-6 illustrates the principle data paths that might be of interest during calibration
and alignment, Each of the paths is numbered and described by number in Chart 3-5.
These paths represent the calibration or alignment data flow,

* More detailed descriptions are presented in Appendix C.
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CHART 3-5

Description of Equipment Data Paths

Data
Interface # Type Data Description
1 Coded Input — Includes magnetic and paper tape, keyboard,
and display and computer control panel inputs. Data
represents information and control from or through
the computer plus data or program filed on magnetic
or paper tape.
Output — Display, typewriter, or paper tape panel
output to the operator.
2 Visual or tape Various types of data
3 Visual Two angles/autocollimator
4 Visual Four angles test table position
5 Pulsed Rotary axis motion probably one pulse
6 Timing Frequency less than 1 MHz
7 Timing 2.034 MHz
8 Timing 3.6 KHz
9 0, +1 or -1 pulses Gyro output to frequency counters and IEU
at 3.6 KHz
10 Pulsed Zero crossing pulses from each of two vibrating
strings per accelerometer to frequency counters
and IEU
11 Count For inputs shown — count would be number of time
pulses per n turns
12 Count For input shown — count would be number of gyro
pulses (signed) for n turns of table
13 Count For inputs shown — count would be number of time
pulses per in{ gyro pulses
14 Count For inputs shown — count would be numbers of time
pulses per N accelerometer pulses
15 Visual Status and monitor information plus output from
the counters
Low visual display and printed
16 Manual Manual input of data to computer (includes key

punching, mounting of tapes and punching of
buttons)
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CHART 3-5

Description of Equipment Data Paths (Continued)

Data
Interface # Type Data Description
17 Binary Data Counts from IEU registers. Input in succession

18

19
20

Binary Data

Binary Data
Binary Data

with data valid for same period of time.

Counts from IEU registers. May be summations
of data from several successive transfer across
interface #17

Input data shown in buffer

Output data shown in buffer
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Manual and monitor interfaces are shown in Figure 3-7, The manual interfaces correspond
to operator activities during various portions of the calibration and alignment procedure.
Monitor is performed during the many procedures to verify the operation of equipment being
used at that time. Explanations for each interface on Figure 3-7 are presented on the
figure.
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SECTION 4
DEVELCPMENT OF CALIBRATION TECHNIQUES

The functional description of calibration in Chart 3-1 in Section 3. 1.1 indicated inputs of
instrument data and environment measurements to a computation routine, which in turn
outputs the calibration constants. The obvious sources of the relationships contained
within that routine are the instrument mathematical models. In Section 4.1 we will use
the instrument models to develop general equations from which the relations found in the
computation routine are evolved. The general equations will be seen to contain certain
controllable parameters which describe the input environment in terms of the test table
controllable orientation and angular speed. In Section 4.2 a number of sets of particular
values for the control parameters will be chosen such that the general equations reduce
considerably in form. Each set of particular values corresponds to a different calibra-
tion 'Position’’. If will be shown that the determination of any constant can be accom-
plished by the simultaneous solution of at most two of the reduced equations. In

Section 4. 3 the complete set of calibration computations will be delineated. The relations
employed in the computation routine correspond to the solution of the calibration con-
stants from the data gathered in Positions 1 through 15.

In Section 4. 4 we will describe the operations and computations required prior to the
collection of calibration data. An example of a precalibration operation is the determina-
tion of the orientation of the ISU body axes relative to the test table inner-gimbal frame
TBI). In Section 4. 5 a brief discussion of the implementation of the proposed
techniques will be presented. The discussion of the implementation of the calibration
techniques is directed towards clarifying the relation between the developments in this
document and the operational procedures described in the Laboratory Procedures Manual.

(i.e.,

Before proceeding to the development of the calibration techniques, it is appropriate to
describe those incentives which motivated our specific choices of calibration techniques:

. The determination of any calibration constant should be made as insensitive as
possible to the imprecision of any other constant(s).

. It is advisable to use as few different test table orientations as possible; and
where the orientations are different, to try to make the orientations differ from
one another by as little adjustment of the table as possible. The satisfaction of
this requirement serves two purposes. First, it will allow for the simultaneous
calibration of many instruments. Secondly, by limiting the number of table
orientations, the amount of manual activity will be limited, thus minimizing
calibration time, and also the chances of human error,

4-1
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° The imprecisions of the test table orientations should have a limited influence on
the values of the calibration constants.

L The calibration should be made as flexible as possible. We wish to present the
calibration in such a way that additional experiments can be accomplished with a
minimum number of changes to existing calibration procedures.

e We wish to accomplish our calibration with little or no data filtering. We would
like to minimize the effects of noise by judicious choices of approaches other
than involved software processing.

4 The computation program should be as simple as possible.

¢ Data collection time should be limited to about 10 minutes, and the total calibra-
tion time to less than eight hours.

L The precision of calibration, as a function of time, should be apparent from
error analyses accomplished on the resultant techniques.

In the discussions which follow, it will be found that it is possible to satisfy a majority of
the above requirements.

4.1 DEVELOPMENT OF GENERAL CALIBRATION EQUATIONS

Tie soutine that accomplishes the evaluation of the calibration constants we indicated in
Chart 3-1 as a routine entitled "Computation of Constants". In this section we will develop
the general equations from which the computational routine is developed. Those general
equations will be seen to contain the control parameters which describe the environment
inputs. The chosen control parameters are the angular speed of the test table, the first
two gimbal angles (31 and @2) of the test table, and the T2R matrix (which is a function

of the 33 and 64 gimbal angles). In Section 4.2 we will show how particular choices of
these control parameters result in relations from which the calibration constants can be
extracted.

The presentation in this section is divided into two parts. In Section 4.1.1 we develop
the general equations for the three system gyros, and in Section 4. 1.2 we develop the

general equations for the three accelerometers.

4.1.1 Gyro Equations

The development of the general equations begins with a presentation of the Fundamental
Gyro Model. After introducing the ERC environment and geometry into that model we
will have developed equations which are a function of, among other things, the angular

O v cithonnd: Anm o

ers. In subsequent subsections
we will show how the control of those test table parameters is employed in the determina-
tion of the required instrument calibration constants.

~ -~ ~ -~ AT o A 4t alal A P T SN . > T P [ g
Spccd of the test table and test table orientat a er
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The presentation in this subsection contains a great deal of mathematics. So as not to
interfere with the prose, we will present the mathematical development as a series of
eight charts. In each chart, after the first, the equations found on the preceding chart
will be modified to indicate certain assumptions about the environment. In the dis-
cussions which follow we describe, in turn, the assumptions and the related mathematics
presented on each chart.

The Fundamental Gyro Model (Chart 4-1)

The development of the generalized gyro calibration equations begins with the gyro
mathematical model. That model was described in Section 2. 2. 3 and presented as
Chart 2-2. Chart 2-2 is repeated here as Chart 4-1. The gyro mathematical model
describes the relationship between the output (T 5) of the gyro and the input kinematic
environment (a and w) over a time period ty-ty.

Introduction of Laboratory Environment (Chart 4-2)

We first introduce into the gyro mathematical model the vector representation of the ERC
laboratory kinematic environment. At the top of the chart the kinematic inputs are listed.
Note that every possible input has been listed. This is done so that, at one point in the
development, there exists an expression which assumes nothing about the negative effect
of any possible input. Note also that the environment description assumes that ine gyro
is subjected to an input angular velocity gT as generated by the test table rotary axis
motor.

Approximations (Chart 4-3)

The next step is to neglect those kinematic inputs to the gyro which can reasonably be
expected to have a negligible effect on the gyro output. A gyro is designed to be nominally
a linear angular velocity measuring device; therefore all acceleration-sensitive terms
are small. The noise acceleration and the test table-induced accelerations are also
small relative to the nominal g input. Therefore the effects of these small accelerations
are second order in all unbalance and compliance terms and are assumed negligible.
Similarly, it is assumed that the small angular velocity noise terms can be neglected in
all angular velocity-sensitive terms other than the linear term. Note that in Chart 4-3
we have arranged the equations such that only the deterministic g, _u_)E, and ET inputs
exist to the right of the equality. Note also that the equation has been divided by the

gyro scale factor.
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Introduction of Body Axes and Instrument Indexing (Chart 4-4)

The equations presented thus far have referred to a single gyro. At this point we intro-
duce the index i defining three gyros (i = 1,2, 3).

We mentioned in Section 3.2 that for calibration purposes, the vectors g, QE, and ET
must be known in body-axis components. In Chart 4-4 we introduce the body axes, and
express the integrals of these vectors in terms of body-axis components. Because the
nominally known instrument-to-body-axis transformations differ from the actual trans-
formations by small numbers, it is assumed that the nominal values can be used in other
than the proportional angular velocity term. Note that the first three elements in the
equation represent the it® row of the (QG')'1 matrix, scaled by the gyro scale factor.
Note also that these elements are assumed constants whereas, on a microscopic scale,

they are time-varying within the limit cycle amplitude of the instruments.

The function found to the left of the equality has, at this point in the development, been
defined as the triple PiG (i =1,2,3). This vector, which we will refer to as the gyro
processing vector, contains the instrument readout term plus the quantization and noise
terms. The PiG vector, and the approximations made in its evaluation during calibration,

will be discussed in Section 4. 3. 1.

Choice of Body Axes (Chart 4-5)

The next step in the development is to introduce the ERC ISU nominal geometry. Those
transformations which describe that geometry were defined in Section 2. 2.1. Because
the orientations of the output and spin axes are not cyclic, a general index equation
cannot be developed. Therefore a separate equation for each gyro is presented in
Chart 4-5.

At this point the general equations relate the gyro processing vector (which includes

measurable gyro readout, noise, and quantization error) to the measurable body-axis
components of the environment (described by g, _@_E, and QT).
we will relate the body-axis components of the environment to the controllable test

In the remaining charts
table parameters.

Integral Evaluations (Charts 4-6, 4-7, and 4-8)

The preceding chart listed the required equations as three expressions which are linear

in the unknown calibration constants. The coefficients of those unknown constants are

presented as integrals of body-axis components of g, EE, and QT. In the discussions of



calibration techniques which follow this subsection we will show how calibration is
accomplished by a control of the values of these integrals. Before we can show this we
must functionally relate the integrals to the controllable test table geometry. The
following three charts develop those functions.

In the first chart (4-6) the integrals of the body-axis components of g, _@E, and QT are
expressed as transformations from the frames in which they are well known. The
definitions of the transformation geometry and notation were explained in Section 3. 2. 1.

In Chart 4-7 the earth-axes components of g and <,_¢E and the rotary axes components of
&\T are introduced. Additionally, the TTE and TRT matrices are expressed as functions
of the ¢4 and ®2 gimbal angles. (See Section 3. 2.1 for definitions of this geometry. )
With these equalities introduced, we can now extract all but the time-varying parameter
(®2) from the integrands of the equations.

In the final chart (4-8) the integrals are combined as the calibration constant coefficients.
The equalities listed at the top of the chart allow the integrals to be separated into sums
of monotonically increasing terms, harmonic terms, and terms which are functions of
terminal conditions only. The only harmonic terms are those which contain integrals of
sines and cosines. The monotonic increasing terms are those containing At, and the
terminal condition terms are those which contain A's other than At.

Charts 4-5 and 4-8 constitute the required general gyro calibration equations. Note that

our result is a set of three functional relationships among: the 'processing vector"
P,S ; the unknown calibration constants; the magnitudes of gravity (g), earth rate (wE),
and latitude (); the total time of integration (& t), and the controllable test table
parameters, which are

by - The trunnion axis angle

¢9 — The total angle of revolution about the rotary axis

T d%2
w™ =—— — The speed of the test table
dt
and TBRm — The matrix which transforms from the rotary axis frame to the

body axes for the mtl calibration position.

(See Section 3 for definitions of all test table geometry. )

In Section 4.2 we will show how gyro calibration is accomplished by 2 control of the test

table parameters contained within the functional relationships.



CHART 4-1

THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS:

N N N 2 w2
Ad kflok =‘ft (Q_G.) dt + Jt [rR-hBI(?--g) + Bo(ag) + Bs(3-§) + CII(E'Q) + CSS(§'§)

0 0

+ Cig@G) @) + Cog@Q) @) + Co@G) @0)

d =
+ Qplw 9)2 + QglwG) (w8) + J g (wr Qildt + An + Eq

WHERE

] « is the angular velocity applied to the gyro

. a is the acceleration applied to the gyro

. ty < t sty is the time interval over which a and « are measured

. tN - tO = Nr, where N is an integer, and T is the gyro sampling
neriod

* S is a unit vector along the spin axis of the rotor

) O is a unit vector directed along the output axis as defined by the
gimbal

. G is a unit vector along O x S (that is, the sensitive axis of the gyro)

s 5.1{ is thie Kihi Y10 pulse, eyual Lo +i, -1, ur O fur pusiiive, negative,
or no pulse

. Ad is the gyro scale factor

. R is the gyro bias

. BI BO and BS are the gyro unbalance coefficients
. CII CSS CIS COs and CIO are the gyro compliance coefficients

] QIS and QII are dynamic coupling coefficients due to gimbal deflection
and scale factor nonlinearity, respectively

J J is the angular rate coefficient
. An is the effect of gyro noise over the Cto, ty? interval
] Eq is the gyro quantization error
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CHART 4-2

INTRODUCTION OF LABORATORY ENVIRONMENT

ASSUME
o oo JIT, wEE = (u:T + AwT) + (cuE + AwE) is the total applied angular
;elocit_y B - B - -
where: QTT is the total test table angular velocity
cﬁT is the measured test table angular velocity
g-_EE is the total laboratory angular velocity
&E is the assumed (surveyed) laboratory angular velocity
) EL =g+ tTT X (cﬁTT Xr)+ J_:TT X r + Aa is the total applied specific force
where: g is the assumed (surveyed) laboratory specific force
(i-TT b4 (:TT X r) is the centripetal specific force due to the table
motion
ETT % i is the angular rate specific force due to the table motion
Aa is the deviation of the assumed laboratory specific force from
the true
" QTTx (c_«:TTxg) and éTTx r are formal expressions, as r is not explicitly
defined.
INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-1, WE HAVE
Aal:gﬁk} =;tN I:(EE+ET+AE,E¢A ) c]m
k=1 to
R J_-:N;[m B - ™ (FTxp - e xr - a2 9} + Bg [<5+ T x @ T xp . 2T xps a2) 9]
0
+ Bg [(§+ AT x @TTxr)+ ™ xrs Ag)'§J “Cy [(g oM x (T Ty e eTTxr+ a2) g] 2
+ Cgg [(g + 0 TTx (T Txr) + eTTxr+ 82) §jl 2
+ Cg [(g+ TTx (T Txp) s 6T Txr+ Ag)-g] EE e T T @ T+ @ TTxr Ai)-§]
* Cos[(s cwTTx (M) - dTTxr - 02) Q:I l:(g T (T e o TTxr s a2) §]
‘o [g*;'fw"““ TTxr. sa) (_;:l [(y Ty (JTxp s o Txr+ 0w) (_)]
- qy |'(£|-:* Joaufeauhe|?
+ Qg L(«_»E v oTeafe A&T); E&‘E cuTrafe A‘:'T)'§:I + Jd/at l:(fE +uTradfen ;5)'9]““
+An+ Eq
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CHART 4-3

APPROXIMATIONS
ASSUME

e Terms containing the integral of components of Aa always have negligible
effect on the gyro readout.

TT (TT

¢ Terms containing the integral of components of « X r) and

TT X r have a negligible effect on the gyro readout.

| TT x (oTT xr) [<(0.22)2 x 0.5 = 0. 024 ft. /sec. 2 = 0.008 g.

e Terms containing QIS or QII and the integrals of components of A g:‘E or

A L_:.‘T have a negligible effect on the gyro readout.

e Terms containing J and the integrals of the rate of change of A o_;E and

A c_LT have a negligible effect on the gyro readout.

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-2 WE HAVE
(AFTER SOME ARRANGEMENTS):

—
N N g T
kzl 5k> - (1/49) An - (1/ 49 Eq - (1/ A9) j @Mﬁ +AwT) c_;] dt
- to
,.tN -, E T tN
= (/A8 | U+ +«”) Gldt + (R/A) L (Bysad | (gGadt
tn L O
ty N N 0
+(Bo/a®) [ T(g-O)dt + Bg/Ad) | (gS)dt+ (Cp/ad) | (g-G)%dt
t t t
N N tN
+ Cgg/A ) J’t (g-89)" dt + Crg/ ) 3 (g-G)(g-S)dt + (Cug/A®) j (g- O)(g-9)
0 0 Y
N N T, -2
+ (CIO/Ad‘) jt (g- G)(g-O)dt + (QH/A 3 | r(u. +w ) GI%dt
0 to
t t
+ Qy/A9) ftNC(fE v a6 («F W) siat + g/a9) th d/at [(«F + wT). 0%t
0 0
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CHART 4-4

INTRODUCTION OF BODY AXES AND INSTRUMENT INDEXING

ASSUME |e B, §2 1_33 are a triad of orthogonal unit vectors which have a fixed
orientation relative to (_Bi' 91 and -S-i where i is the instrument index equal
tol, 2, or 3.

Therefore, G =Z (gi- l}k)gk ;0= E(Qi-gk)l} ;8= E(§i-l_3k)l_3k

o (G Bk) (O;- Bk) and (S Bk) differ from their nominal values (G -B )
(0 Bk)n and (S Bk) by small numbers. Those differences are sufﬁc1ently
small as to only affect the gyro readout via the proportional angular velocity
term.

WITH THESE ASSUMPTIONS THE GYRO EQUATION BECOMES

G t t
PG ae! Y N Eppa . 7N Topjac
[ LA PO R

I tov N E N, T
. (G.‘BZ),AGU . (w™ Byt + "'o (w -§2)dl:

t
G 11N t
pCBAe G e Egars N (wT-Byar !
0 ty \
gt b
P o \
"
"By as! (c n - {
© Brae; Gi-B)" | (g Bk)dt
\ { ‘ (
) BO/A@” £ (0;-B, (g Byat
' i \ n N t
TP At B 1 E B

i
At Lz B)" (G,-B)" (gsk)(ge)ml

i t
“) Css a0, LITi B 58" N g BB |
r ty \

' t § l
*1Clo 88 P}éf(cv B)" (08" (gBk)(gB)dt‘

,st/“' :Ez(c BJ" (5,-B)" (gBk)(gB)dt'
r

N l

Ef(‘-’t"‘k’" (88" (g By )(g-Briae |

t t. t t |
{ +N, E E . E - “
"Qnme:i %ff«g,-gk)" (G, B)" Jlo (B B« ~§r)dt~_:‘:(g 'Ek)(gT~§r)dto~t:(§’r.§‘()(!£.§r)dlo VIN@T-E.J(‘:T-!},)N ‘
0

t t t t
W2 | BTGB (58" .:‘:‘@E-Msﬁ-s)du S WITLE SUELE WIS ST N T B e |
0 (] 0

. : yae }i ]‘f(o 9«’" D Ep)+ wTB) a }
WHERE
N t, B
»f - % Lfl 54 (- 1/ 88, (Am), - (1708, (Eq), - (1/a0), f‘oN @sFoadhe @ }
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A CHOICE OF NOMIN

ASSUME

[91'1}1{]“ =

'OO'—“

o = O

IHOO'

(0B, 1" =

(8B, 1" =

== ol
o O O
|o o '-"

lOOO

o o -

e = o

g - 16y B/ael

+ Yoy Byas)
+ { Gy By/ae}
+ {R/ae},

+ §BI/A¢§1

+ {BO/A¢§1

+ {Bs/Mnfi

4 Cn/A"fl

+ 3°ss/'““’fl

+ 3clo/Ao§1
+ ;cIS/Awgl
+ {Cos/mbfl

+ }Qn/Aq’gl

+ }QIS/Aé ‘1

+ ; J/Aq&tl

t t
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0 0
N, E AN, T
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0 0
N, E N, T
{Jt (B Bydt + N e -1_33)dt}
0 0
t
o)
to
Y \
B, )dt
1Jt0 & By f
t
U 2]
t
g e
0
N 2
Jto (g By)"at

{j L ,_,2,2‘“}
N
%J & B 1_33)dt}
!
{

t
-j't N (8- B,)(g- By)dt }

~
\Y

0

t t
N @B B2+ [N(T B) %
t

N
{ -], & By Byat }
f
U,

t
+ thN (« E. B))(w T. gl)dt}
0

t
0

t
~It:‘ (@® BT Byat
-B )« E. By)at

t
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0
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CHART 4-5

AL INSTRUMENT AXES

G

Py = {Gy By/asf,

+ Gy Bylas|

+

{(Gy' By)/ “‘!2

+

wael

+

{syaol

+

s/l

+

| Byaol

+

icn/‘”'fz

+

jess/aol,

+

iclo/“"fz

+

cw/ael

+

c
{ os/M’f2

+

%Qn/Mfz

+

{ Qg/a o,

+ iJ/Mﬂ2

t t
NS ma s [ T pal

o

t
@B Byat + [N(T Bz)dt}
o o T T

t
5 : (wE Bat + It: (wT. ga)dt}

(g By)(g- Byt }

v

N
-[ 7 @ B %)dt}
to

t
N, . E 2 N,.T 2
J‘ (w -]_32) dt + 'Fto (& .§2) dt

J

1

{

¥ e m myet
|

|

+2 j‘:: («® BT Byat }
{ 'J':N (w® By)lw ™ Byat

0

t
- J‘t: (2B B)(wT- Byat
- N T B (E. Byat

t
TN T BT 1_33)dt}

{ fto :—t[(QE.El) +(£T.§l)]dt }

w

t t

ftN(‘EE' B )t + J’tN («T. §1)dt}
0 0

N (E.pjat » (N (T

Ito £ Byat 4 I‘o = * Byat

Gy By/aef

+ oy Byas]

tN E t
*femyael {1 NeB e s 1N nyal

o

+ isl/M'}s
+ ’BO/Atb%S

+ jas/mb}s

{
{
{
v iRae} {1Val
{
{
{
- fogeel,

j‘tN (g B 1_32)dt}

-+

t
N WE.py2at + N (T Byt
to to

t
+2f N B By ™ 93"“}
0

t
L 2L N TP ST
0

N, E T

*fto (@™ By)(w - By)dt
T, E

+ft0 (w ]}2)(‘: 1_33)(“

t
N,..T T
+ (« "+ B,) + By)dt
'J'to ol ) (w _3) }
t

N
+ ;J/A¢>g3 { J‘to %[(QE'EI)+(QT.]_5_I)Jdt}
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CHART 4-6

INTEGRAL EVALUATIONS
ASSUME

) EE, g and ‘tT are located as shown in Figure 3-2

e All transformations between frames follow the convention given by the
following example:

0 TBR

m im

+EF At + écwhere €c is the clock quantization error

R

Ei = —m

t
r N
. dt—tN

0
to

e The effect of €c is negligible

THE NINE INTEGRALS CAN NOW BE WRITTEN AS:

(l.aE,_B.

im “mn * np

JfN(E'Ei) a = JJ:N

“0 0

gg TBR pRT 7 TE (g.E ) dt

N N BR (RT [ TE BR (RT 1 TE
Jt (g. k)(g' )dt - I rEn‘x":l%Tkm mn np (E'_ q%gTququ (g.E ):I dt
0 0

ItNE E _ N BR RT TE pBRRT \TE E
to(f 'Ek)(ﬁ ‘Er) ac = I }r:ngg TkamnTnp(‘_‘.’ qus rq quTus(f '_E_:s) dt

N : N RT .TE
j‘t-o(fE'_Bk)(fT'gr)dt J [mgg TBRT T (w E]l%l rq (w Rq)] dt

mn ~ np

N BR , T B
R,.T
Ito(BT'l_ak)(ST'Er)dt (w 'Bmil E{Trq (w ‘Bq)]dt

I
B
=Y
-3
g

&
I
I
(e
S
[l
hg
o+

tNa[, E T BR (RT TE T N
NG [Emy T aar - [535 708 T TEGE B R TR TR

------l---'-

.

-

(=]
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4.1.2 Accelerometer Equations

As with the preceding gyro equation development, we develop the general accelerometer
calibration equations by introducing the laboratory geometry and environment into the
instrument model. A great number of the comments relative to the development of the
general gyro equations apply equally well to the development of the general accelerometer
equations.

As in Section 4.1.1, we discuss each of the charts in turn.

Fundamental Accelerometer Model (Chart 4-9)

The accelerometer mathematical model was introduced in Section 2.2.2. Chart 4-9 is a
repeat of Chart 2-1, showing the input/output relationships for a vibrating-string accel-
erometer. The notation presented is self-explanatory.

Introduction of Laboratory Environment (Chart 4-10)

In Chart 4-9 the accelerometer output is seen to be influenced by only applied accelera-
tion inputs. Note that the accelerometers are assumed to be in a stationary attitude
relative to the earth. The stationary attitude assumption dictates that all accelerometer
calibrations will be accomplished without a use of the dynamic rotational ability of the
test table. The main reason for this constraint is the fact that a motion of the test table
introduces undesirable angular velocity-related accelerations. (See Section 2. 1 of the
trade-off document. )

Approximations (Chart 4-11)

The environment approximations are self-explanatory. All neglected terms are assumed
to have a second order effect on the accelerometer readout.

Introduction of Body Axes and Instrument Indexing (Chart 4-12)

The comments presented in the gyro equation development apply equally well here.

A Choice of Body Axes (Chart 4-13)

These equations are the desired general form. In Section 4.2 the determination of the
calibration constants will be shown to be dictated by a control of the parameters found in
the Environment Evaluation part of Chart 4-13.
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CHART 4-9
THE FUNDAMENTAL ACCELEROMETER MODEL
THE ACCELEROMETER MODEL IS:
£ t &
jt fo dt - jt fydt = (Ny-N;) + Eq = D jt (a-A)dt
a a a
ty |

Dy )1, oDy Dan
a

WHERE:

a is the acceleration applied to the accelerometer
ta st< tb is the time interval over which a is measured
A is a unit vector directed along the input axis of the accelerometer

N1 and N2 are the number of zero crossings detected in ta it\_:tb
from both strings of the accelerometer

Eq is the instrument quantization error due to the fact that ta and tb
do not correspond to zero crossings

D1 is the accelerometer scale factor
D, is the accelerometer bias

D2 is the second order coefficient
D3 is the third order coefficient

f2 and fl are string frequencies in pulses/second
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CHART 4-10

INTRODUCTION OF LABORATORY ENVIRONMENT

ASSUME

. EL = g +4a is the total applied specific force

Where:
g is the assumed (surveyed) laboratory specific force

Aa is the deviation of the assumed laboratory specific force from
~ the true

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-9 WE HAVE:

t t

b b

(Ny-N,) + Eq = D j‘t [(g +0a)-Aldt + D, \(jt (DD, (g-A +Da.4)
a . a

+ Dg(g-A +82.4)%lat !

2

NOTE THAT THE TEST STAND IS ASSUMED STATIONARY

(THAT IS @ T x(w ' x r) and »®1Lxr WILL NEVER BE SENSED)
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CHART 4-11

R

APPROXIMATIONS

ASSUME

e Terms containing the product of the integrals of components of Aa with
D2 or D3 have a negligible effect on the accelerometer readout.

® (g-A) isa constant over the time interval t, Sts t,

. jtb dt = At +€
t
where:
At = N7, Nisaninteger and T is the clock period
EC is the clock quantization error

. Terms containing the product of €c with Dy, DZ’ or D3 have a negligible
effect on the accelerometer readout.

WITH THESE ASSUMPTIONS, THE ACCELEROMETER FQUATION BECOMES:

t
(N,-N) + Eq - D, jtb(qu_x_) dt - D (g-A) €]
a

- {Dl(g-é) + Dll:D0+D2 (g a)? + D3(_g_.é)3] } At
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CHART 4-12

INTRODUCTION OF BODY AXES AND INSTRUMENT INDEXING

ASSUME

* By, By, and Bj are a triad of orthogonal unit vectors which have a constant
orientation relative to Aj,where 1 is the instrument index equal to 1, 2,
or 3.

Therefore, 3
A; =21 (4B By

. (éiolék) differ from their nominal values (éi- ]ik)n by small numbers. Those

differences are sufficiently small as to only affect the accelerometer readout
via the proportional acceleration term.

e The effect of €C is negligible,

vB) | (e Bpat]
Dy(4yBy) | {(g-ByAtf

!

+ {Dy(A;'By) | |(g-Byat]
{
{

i ;B';’ ? (éi-@_k)n(éiolir)n(g.]ék)(g.gr)]At %

PRy T E BBy By e B B B At |

WHERE
£
e PY=(N,-N)-D [ (Aa-A)dt + Eq
a

[ The first three terms in the right hand side of the equation include the
effect of the misalignment,

o The second order cross couplings due to the misalignment have been
neglected by the second assumption.
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CHART 4-13

A CHOICE OF NOMINAL INSTRUMENT AXES

ASSUME
1 0 O
[aB " =10 1 0
0 0 1
THEN
- {piarBy} {eBpac)py= {payBpf {@Byat) [P={pyag-Bp} leBpat]
i@} {EBag) DAy By} {(EBA |+ {Dyag By} Byt
- {Dyay By} {Byay|  + {Day By} (@Bt |+ {Dy(ag Byt HeByat)
N {DlDO}l fat] . {DlDo}z At} +{D1D0}3 {at}
+ {DD, @By?atfl  +{DD,}  {@By?at}| +{pp,}  {@Byat]
{ {

ENVIRONMENT EVALUATION

ASSUME

® g is located as shown in Figure 3-2,

o All transformations between frames foilow the convention given by the
following example:

THE i BODY AXIS COMPONENT OF g IS:

B - BR RT TE .
(g l_3_i) = %%% Tim Tmn Tnp (g E.:) (Test Table readout)
_ BS SE . .
= 1%1?1 Tim Ton 8 Ep) (Autocolimator alignment)
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4.2 CHOICES OF CALIBRATION ENVIRONMENTS

The general gyro equations are presented in Charts 4-5 and 4-8 and the general accel-
erometer equations are presented in Chart 4-13. These equations represent the functional
relationships among the instrument outputs, the input environment measurements, and the
calibration constants.

Each instrument equation is linear in n unknown calibration constants. Therefore, it is
possible to determine the numerical value of all calibration constants contained within any
equation from the simultaneous solution of n equations corresponding to n different
measurements of instrument outputs and input environments. Such a technique of con-
stant determination would involve the inversion of an n x n matrix. When n is large, as
it is in these instrument equations, matrix inversion is very cumbersome.

There is, fortunately, an easier technique for determining the calibration constants.
That technique involves the control of the environment inputs (by a control of the test
table parameters) such that the instrument outputs would be insensitive to a large number
of terms. This corresponds to the adjustment of the environment-sensitive coefficients
of a large number of constants in the general calibration equations to zero. If it were
possible to null all but one, the determination of the remaining constant would naturally
be trivial. In this system, however, it is not possible to null all but one but we can in
many cases null all but a few coefficients. In the subsections that follow we will apply
this "nulling technique' to the calibration of the ERC ISU. The result will be a set of
equations from which any calibration constant can be determined by the simultaneous
solution of at most two equations. Each equation corresponds to the input/output rela-
tionship for an instrument subjected to a particular environment, by control of the test
table parameters.

We begin our presentation, in Section 4. 2.1, by dictating the environments and developing
the equations from which the gyro scale factor and (QG')'1 matrix can be determined. In
Section 4. 2.2 which follows we will show how to calibrate the gyro unbalance, bias, and
square compliance terms. In Section 4. 2.3 we will show how to determine the com-
pliance-product coefficients, and in Section 4. 2. 4 we will complete the discussion of

gyro calibration by describing the experiments for investigating the gyro scale factor non-
linearity and J term. The discussion of the calibration of gyro constants in any sub-
section will assume that the constants discussed in previous subsections are well known
from previous calibrations.

The description of accelerometer calibration begins in Section 4. 2. 5 with a description
of the calibration of all but the cubic term. In Section 4. 2.6 we complete the calibration
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developments by describing the determination of the remaining accelerometer cubic
terms.

4.2.1 Determination of Gyro Scale Factor and Misalignment

In this subsection we show how particular choices of input environments reduce the general
gyro equations to forms which enable a relatively simple calibration of the gyro scale
factors and elements of the (QG)'1 matrix. (The matrix elements are sometimes referred
to as "misalignments' from the nominal ISU design.) Our attention is directed to the
general gyro equations found on Charts 4-5 and 4-8. We will dictate choices of the test
table parameters found in the integrals shown in Chart 4-8 such that the desired angular
velocity-sensitive terms predominate.

We see that many of the integrals found in Chart 4-8 are functions of harmonic terms as
well as terms which increase monotonically with time. The harmonic terms are terms
involving integrals of trigonometric functions of <b2. Such integrals are bounded in value;

do

as a matter of fact, if wT = 2 can be made constant, the harmonic terms would equate
dt

to zero for any multiple of whole turns (¢2 = 2nw) of the table. Under such conditions a

large number of the terms in Chart 4-8 would disappear. In Chart 4-14 we see the sub-
stitution of the integrals into Chart 4-5 under the condition of whole turns of the table,
while rotating at a constant speed. (See Section 2.1 of the trade-off document for further
comment about whole-turn equations. ) The assumptions made in the equations in

Chart 4-14 are shown at the top of the chart. The condition on the transient terms re-
quires additional comment.

The ERC table will have a precision limitation on its ability to rotate at a constant speed.
That limitation is two parts in ten thousand, that is AwT/wT <£2x 10'4; where AwT is
the error in the speed of the table, and wT is the speed of the table. Assuming that a
maximum error of plus € is evidenced in a first half turn, and a maximum error of minus
€ 1is evidenced in a second half turn, then

2m m 2m
[ singydt = [ sin(w! + AwTitat < [ sin(w” - AwT)tdt
0 0 m
2T\ / 1
= 4f—|[—)=a
(A)T OJT
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During all scale factor and misalignment determination experiments the maximum possible
speed will be used. That speed will be just below the saturation level of the gyros, which
is 15 degrees per second. (See Section 2.1 of the Trade~Off Document for further com-
ments.) Under such conditions:

' The proportional transient terms go as

wEEA = 120 x 1077 deg = 0.04 Sec (per revolution)

e The unbalance transient terms go as

BgA = 8x 1077 deg
e The compliance transient terms go as

Ce?A = 0.32x 1077 deg

which are all obviously very small and can be neglected (under the assumption, of
course, that the above analysis typifies the worst-case deviation from a constant speed).

Referring again to Chart 4-14, we see that a horizontal position of the test table rotary
axes (i. e., 051 = 900) would null all unbalance terms. Chart 4-15 introduces that condi-
tion. The remaining test table control parameters in Chart 4-15 are the first column of
the TBR matrix. (The first column of the TBR
table rotary axes (I_{l) relative to the ISU body axes.) The orientation of R, is a function
of the inner and outer gimbal angles (¢3 and ®4). Having two gimbal angle degrees of
freedom dictates that any values of the first column of TBR can be requested. (Equating
the TBR choices to ¢3 and ®4 settings is the subject of Section 4.4.2.) In Charts 4-186,
4-17, and 4-18 we show the calibration equations for six choices of the first column of

TBR. All choices are shown at the top of the charts. We see that

matrix dictates the orientation of the

e Chart 4-16 corresponds to the alignment of the first body axis with the rotary
axis in both the plus and minus sense.

e Chart 4-17 corresponds to the alignment of the second body axis with the rotary
axis in both the plus and minus sense.

e Chart 4-18 corresponds to the alignment of the third body axis with the rotary
axis in both the plus and minus sense.

In Charts 4-16, 4-17, and 4-18 the test table parameters have been completely specified.
The first table gimbal angle ¢ is equated to 90°. The second gimbal is rotating over
whole turns at a constant speed. And the third and fourth gimbals are implicitly specified
by choices of the first column of TBR. We will refer to these six orientations as Posi-
tions 1 through 6, respectively.
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We note in Chart 4-16 that only the first terms in the three gyro equations have opposite
signs in Positions 1 and 2. Therefore, those terms can be isolated as a function of PE

(k = 1,2, 3) by simply subtracting the equation for Position 1 from the equation for Posi-
tion 2. From known environment inputs and known PE values the first gyro constants can
therefore be determined. (The manner in which Pg is known is the subject of Section
4.3.1.) The second and third constants can be found by similar uses of Charts 4-17 and
4-18, respectively. The final equations for the gyro scale factors and (QG)'1 elements
are found in Section 4. 3.2. As a matter of convenience the computational equations from
this and subsequent subsections are tabulated at a single point in this document, which is
Section 4. 3. 2.

4.2,2 Determination of R, B, B, Bg, Cypand Cgg

Subsequent to the calibration of the principal angular velocity sensitive terms (scale
factors and (QG')'1 elements), the gyro equations predominantly contain, as unknowns,
acceleration-sensitive terms (i. e., unbalance and compliance coefficients)., This pre-
dominance is even more evidenced when the angular velocity input is controlled to a small
constant value. Under that condition the remaining angular velocity terms (QII and QIS)
become relatively unimportant as influences on the gyro outputs. These points suggest
that the calibration of the unknown unbalance and compliance coefficients should be ac-
complished under the conditions of extremely small angular velocity inputs. Not only

will the QII and QIS be negligible, but also the imprecision in the already calibrated scale
factor and (QC')'1 elements will have a minimum influence on the precision of the unbalance
and compliance coefficients to be determined.

In Chart 4-19 we present the general gyro calibration equations under the influence of the
minimum practical angular velocity environment. That angular velocity input is earth rate;
that is, the table is stationary relative to the laboratory. We say minimum 'practical"
environment because it would be possible to rotate the table at near minus earth rate, thus
reducing the total angular velocity input below earth rate; but earth rate alone is so small
that there appears to be no reason to try to regulate the speed of the table to a small number.

At the top of Chart 4-19 we present our gimbal angle choices of 9 = 0 and Py = 90°. There
are several reasons for these choices. First, it must be pointed out that we are interested,
for the purpose of calibrating acceleration-sensitive coefficients, in controlling the
orientation of only the input g vector relative to the body axes. To completely control one
vector relative to the body axes requires only two orientation degrees of freedom. Two of
the four test table degrees of freedom can therefore be chosen for matters of convenience.
We choose the particular values of 21 and g, as shown in Chart 4-19, for the following
reasons of convenience:
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GYRO CALIBRATION W

ASSUME
For whole turns of ¢2:

1) All transient terms are negligible
2) Terms of O(wE 2 are negligible
3) Terms of O(U:EA<D2) are negligible

4) ?9 is constant
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given on this page.
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CHART 4-14

IOLE-TURN EQUATIONS
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GYRO CALIBRATION
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CHART 4-15

HOLE-TURN EQUATIONS
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GYRO CALIBRATION WHOLE -1
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CHART 4-16

URN EQUATIONS POSITIONS 1 AND 2
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GYRO CALIBRATION WHOLE-T
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CHART 4-17

JRN EQUATIONS POSITIONS 3 AND 4
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GYRO CALIBRATION WHOLE -1
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CHART 4-18

URN EQUATIONS POSITIONS 5 AND 6
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¢ The value 91 = 0° is chosen because it results in the same ¢3 and ¢4 settings
for the six positions required for the subject calibration as required for the first
six positions.

e The value o9 = 90° was chosen for two reasons: the first reason is that it places
the ¢3 gimbal in the north-south direction, and that gimbal, in conjunction with
the east-west ¢; gimbal, can be used for small angle corrections of the table
base motions as measured by bu(;)ble levels (see Section 4.4.4). The second
reason for the choice of g9 = 90" is that it results in only the second column of
TBR being required in calzlbration computations. This results in a minimum
amount of data handling during precalibration survey activities.

The equations in Chart 4-19 contain, as control parameters, only the first and second
column of the TBR matrix. The acceleration-sensitive terms are, however, a function
of the first column only. The table orientation control will therefore be preoccupied with
that column. In Charts 4-20, 4-21 and 4-22 we introduce the choices for the first column
BR corresponding to Positions 7 through 12, These choices for the first column of
TBR are the same, respectively, as they were for Positions 1 through 6. With the
assumption that the first three gyro coefficients are known from the calibration described
in the preceding subsection, we see that Charts 4-20, 4-21 and 4-22 present six equations
in the six unknowns:

R, B, Bg. Bg, Cyp Cgg

We note that at most two equations are required for the solution of any required unknown.
In Section 4. 3 the solution of the equations for the six unknowns is presented.

4, 2.3 Determination of CIO’ CIS and COS

The three product-compliance coefficients (CIO’ Cig and COS) were not evidenced in any
equation for Positions 1 through 12, None of those positions senses the minimum of two
body~axes components of acceleration required for the detection of product-compliance
coefficients. In this subsection we choose three additional laboratory-fixed orientations
(Positions 13, 14 and 15), each position detecting two (and only two) body-axes components
of g. On Charts 4-23, 4-24 and 4-25 we present the instrument equations for those three
positions. In each equation on those three charts there exists only one unknown product-
compliance coefficient. The solution for that coefficient, in terms of the known input

environment vector PG, and the previously determined calibration constants, is found

in Section 4, 3. The_determination of the second column of the TBR

a precalibration activity. In Section 4. 4.3 that activity is described.

matrix is considered

There are three remaining constants to be described, namely: QII’ QIS and J. The
QII constant is intended to represent the scale factor nonlinearity. In the following
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CHART 4-19

5N FIXED ORIENTATION
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CHART 4-20

RIENTATION POSITIONS 7 AND 8
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CHART 4-21

ENTATION POSITIONS 9 AND 10
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CHART 4-22

ENTATION POSITIONS 11 AND 12
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XED ORIENTATION POSITION 13
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IED ORIENTATION POSITION 14
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GYRO CALIBRATION FIXE
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CHART 4-25

ORIENTATION POSITION 15
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discussions we will describe not only how that constant is found, but also any other higher
order w sensitive coefficients that are evidenced in the gyro readout. The Qg calibration
is not presented. It is assumed that this term is too small to be detected. The last
paragraphs in this subsection discuss the calibration of the Jterm. It will be seen that
this calibration requires test table speed controls not found in any other calibration.

Gyro Nonlinearity

The QII term in the gyro equation was described in Section 2 as the nonlinearity term.
This term is intended to describe, in conjunction with the scale factor term, the output
rate (say P) as a function of the input (say ) as:

P=A+Bw+Cuw?

rather than the more familiar
I.’ =ATBuw

The interpretation by many is that this term introduces a nonconstant scale factor as-
sumption, thatis

P=A+B+Cuw)w
Regardless of the interpretation, it seems appropriate to assume nothing about the highest

power of « and in fact to try to conduct experiments to find all coefficients (say Ak) where

n

i’ = A0+A1°"+A2“?="'Anw

Such experiments are very simply described but would probably be somewhat time con-
suming to implement.

Let us direct our attention to the equations for the one gyro in Position 1, the two gyro in
Position 3, and the three gyro in Position 5. We see that each equation can be written:

P 2
— = Ayt Ayt Agw
At 0 1 2
where Ay = R, A® + f(acceleration)
Ay = Gy *B,. 48 ~ 1/20
— /
A2 = QH, A¢
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If experiments are conducted where only w is changed (and not acceleration), AO would
always be a constant. We see that a variation of the table speed only, in the positions
mentioned, accomplishes this need. Also the equations can be generalized to contain higher
order w terms. That is:

= 2 ... n
P/At—AO+A1w+A2w A w

The experiments can now be delineated:

e Collect gyro data Z 6 from Position1, 3, or 5 for n different speeds of the
test table.

e Collect the table speed data by measuring Aq)z and At.

T Ao T
wo = A for constant w ™~ and whole turns of A¢2-
t
e Let the total speed imposed on the gyro be described by
Ao
W= + w E sin )
At
e LetP be given by
. (Z9)
P=—
At

that is, data is collected sufficiently long such that quantization and noise are
negligible (see Section 2. 2 of the Trade-Off Document).

e Plot P against w:

w

e Analyze the plot to find f, where P =f(w).

d Term

The environments chosen for the determination of the J terms are shown in Chart 4-26.
Note that the positions chosen correspond to Positions 7 and 11 (which were used in
Section 4.2.2) with the modification of a rotating table. The gyro data will be collected
over a period during which the angular speed has changed. This calibration is the only
one which requires the determination of the time-varying integrals:
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CHART 4-26

G TABLE POSITIONS 7 AND 11
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e [ sin¢2 dt

e [ cos 92 dt

The manner in which these integrals are determined will depend completely upon the man-
ner in which the test table angular acceleration is commanded during the experiment. The
calibration procedures will therefore be dictated by the commanded angular acceleration
profile. There appear to be only three interesting alternatives:

e The first alternative, which appears to be the best, is when the angular
acceleration can be controlled to a desired function of time. In that event
the aforementioned integrals could be evaluated prior to the data collection.
A good example of a commanded profile might be a constant angular acceleration
over a short data collection time.

e Another alternative, almost as good as the above, would be an angular ac-
celeration profile which is an analytic function, but not known until the time
of the experiment. An example would be the ability to command a constant
angular acceleration, but not any given constant. In this event the integrals
would be evaluated after data collection.

e The least attractive alternative would be when the profile cannot be commanded
as a clean analytic function. The J term experiment could be conducted under
such circumstances, but there would be a requirement for the 2, resolver
to be collected in real time for the purpose of evaluating the integrals.

There is no reason to specify which of the above alternatives is to be used until the test
table is evaluated to discern its ability to control angular accelerations. As a consequence,
the J term equations in Section 4. 3.2 are not specified as the equations to be programmed,
as are the other calibration constant equations. Instead they are presented as functions

of terms which will be described as functions of the angular acceleration profile at that
time when the control characteristics of the table are better known. As a matter of con-
venience to the reader the form of the equation is presented for the case when a constant
angular acceleration profile is commanded.

4.2.5 Determination of Accelerometer Coefficients

The general accelerometer calibration equations were developed in Section 4. 1.2, and

the results presented on Chart 4-13. We recall that it was assumed in the development

of those equations that the test table would always be stationary (relative to the laboratory)
during the entire accelerometer calibration. We recall also that nine of the gyro positions
were also stationary. Analysis shows that the nine stationary gyro positions are very
good choices for the entire accelerometer calibration.
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We mentioned in Section 4. 2.2 that, subsequent to the calibration of the principal angular
velocity-sensitive coefficients, the gyro acceleration-sensitive terms predominate as un-
knowns. Thus, when concerned with calibration only, we can treat the gyro as an acceler-
ometer. We note that the three unbalance terms in the gyro equation play the same role,
functionally, as the three scale factor and (QA)'1 terms in the accelerometer equation.

We also note that the square term in the accelerometer equation appears functionally

the same as the square compliance terms in the gyro equation. These facts, and the fact
that the gyro and accelerometer input axes are nominally aligned, results in the use of the
same positions for the determination of acceleration-sensitive coefficients in both the gyro
and accelerometer equations.

In Chart 4-27 we see the accelerometer equations when #1 = 0° and 0y = 90°. As with

the gyro calibration discussed in Section 4. 2.2, the accelerometer calibration requires
only two table angle degrees of freedom. Therefore, two of the four table degrees of
freedom can be arbitrarily chosen. The particular values of ¢ and g shown in Chart 4-27
are chosen for the same reasons mentioned in Section 4. 2.2 (where the gyro bias, unbal-
ance, and square compliance calibration is described). In Charts 4-28 and 4-29 we present
the accelerometer equations for Positions 7 through 12. We note that all but the cubic
term can be explicitly extracted from these equations. (The cubic term always appears in
any equation with the scale factor term and therefore cannot be separated from the scale
factor term.) In Section 4. 3.2 the explicit solution for the accelerometer bias, square
coefficient and off-diagonal (QA)-1 matrix elements are presented. Three additional sets
of equations are presented which relate the scale factor and cubic term combination to the
instrument and environment measurements,

4.2, 6 Determination of Accelerometer Cubic Term

It was noted in Section 4. 2. 5 that the six positions (7-12) did not allow for the explicit
evaluation of the cubic or scale factor terms. We therefore require additional positions

for the extraction of the cubic terms. Positions 13, 14, and 15 (described in the calibration
of the gyro product compliance coefficients) are appropriate as the additional positions.

In Charts 4-30 and 4-31 we present the accelerometer equations for those positions. The
equations for the solution of the cubic terms are presented in Section 4-3.

For each accelerometer, either of the two positions in which the corresponding body axis
is nominally oriented 45° off the vertical may be used. Therefore any two of the three
positions may be chosen to complete the calibration. The equations presented in Section
4. 3 utilize Positions 13 and 14.
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CHART 4-27
ACCELEROMETER CALIBRATION
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CHART 4-28

ACCELEROMETER CALIBRATION POSITIONS 7 AND 8

»251 = 00 Up$ Bl Up 4
by = 90°
SR -~ _

. Euast
I'runnion Ax13

=
[\V)
[y

I

rust —_— - .
Outer Frunmon Axis
AX1s
-~

@ — Rotury Axis

BR 0 Cuter .»\x13>/
BR 0

e - - Rotary Axis

pé - {Dl(él-lél)}l{i[gAt i]}PA 1018, Bl)}{i [gAt]} Py- {Dl(é_s-lzl)}3{i EgAt]}
* {Dl(‘ll"iz)}l 0 + D4y 132)}2 0 +{Dy(agBp)}, O
+ {Da;Byl 0 « D4 ‘By)| iy O * {Dl(é3'§3)}3 0
+ {DlDo}l L At + {DIDO}Z LAt] +{D1D0}3 L at)
9 ,
+ {DlD2 }1 C go At ; + {DIDZ}Z 0 + {D1D2}3 0
+{ DDy} gt + {pp,! 0 +{DD} 0
1731, g St ax PN 1314
POSITIONS 9 AND 10
@1 = o° Upg By Up 4
a o
¢2 = 90
BR _ .
T = 0 . T T Trunnion Axis T Y Trunni — East
11 Outer _ ! Trunnion A
T = i1 Axis >// gt’ff>//1 n e
21 - — Rotary Axis <4— Rotarv Axis
TBR _ '
31 ~ B,
] A
pfl\ = {Dﬁér’il)}l 0 pzA: {Dl(é .};1)_}2 0 p3={D1(é3.Bl)}3 0
+ {Dl(Al Bz)}li[gAt} + {Dy(4yBy)} 4= [gAt } + {Dl(és-gz)}?’ii:gAtJ}
v : .
S{paregh 0 e {pappgf 0| {pgagsy) O
, - , . — :
. {Dlpo}l [ At] + {DIDM2 { At} +{D1D0}3 [ At
+ {DIDZ}1 0 + {DIDZ}2 PN + {D102}3 0
. 3 ,
+ {D1D3}1 0 + {Dle}z { =gt At } +{D1D3}3 0
4-43




|

CHART 4-29

ACCELEROMETER CALIBRATION POSITIONS 11 AND 12
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CHART 4-30

ACCELEROMETER CALIBRATION POSITION 13
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4.3 CALIBRATION EQUATIONS

We noted in Section 4. 2 that the simultaneous solution of at most two equations would yield
the value of a required calibration constant as a function of the input environment and the
defined Pg or P} vectors. The Pg and Pl‘? vectors were seen in Section 4.1 to be a func-
tion of the instrument outputs, noise, and quantization error. In the first subsection which
follows we will approximate the PE and Pl‘g vectors by the instrument outputs only. Those
approximations will be incorporated into the determination of the calibration computations,

which are tabulated in Section 4. 3. 2.

4, 3.1 Processing

We showed in Section 4. 2 that each calibration constant can be solved for as a function of
at most two input environments, two Plé or two PE components, and previously determined
constants. That is, the solution for any constant (say y) can be written as:

y = Ax+ B
i/p P p
where X=—|—*— Jor —
2\ At At At
A= 1
~ environment coefficient of y
P=Pl‘?or ngork =1, 2, or 3

B = function of other calibration constants and environment
inputs.

In Section 4.1 we defined the P vectors as a function of instrument readout, quantization
error, and noise. We suggested in the introduction to Section 4 that we wish to approxi-
mate the P vectors as functions of instrument readouts only. We would like therefore to
collect the instrument data in such a way that the effects of quantization and noise fall be-
low some required threshold. Fortunately the noise can be represented by random pro-
cesses with bounded means and variances. The quantization error is by its very nature
also bounded. On the other hand, for a nominally constant input environmént, the instru-
ment out put is a monotone increasing function of the observation time. Thus by choosing
sufficiently long observation intervals, the percent error in the assumption that the instru-
ment output equals P can be made arbitrarily small,
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In Section 2 of the trade-off document the analysis which leads to the above conclusions is
presented. The results of that analysis are presented in form of graphs in which the
precisions of the calibration constants (with the assumption of neglected noise and quanti-
zation in PE or Pﬁ ) are plotted against time. Those graphs will be used in the Laboratory
Procedures Manual to determine the calibration time required to obtain a desired precision
in any constant.

4. 3.2 Computation of Constants

With the approximations described in the previous section, it is now possible to solve
explicitly for the calibration constants in terms of well-known instrument and environment
measurements. The equations are presented in tabular form on the Calibration Equations
Charts. These equations are those which are to be programmed. An exception is the

J term equations which will not be in program form until the time when the test table is
evaluated (see Section 4.2.4).

It has been noted in Section 4.2.5 that the accelerometer third order term cannot be
separated from the scale factor by a choice of positions. In the following set of equations
there are two equations given for each accelerometer that relate the scale factor term
[Dl(Ai- Bi)]i to the third order term (D1D3)i' If a simultaneous solution of the two equa-
tions is used to determine the scale factor and the third order term, then the scale factor
will be sensitive to errors in the bias and the second order term. These terms appear on
the equation listed second in each of the three sets of two equations, This may be avoided
0y determining (D 1D3).1(by simultaneous solution or other methods) and using this value to
solve the first equation for {D l(Ai'Bi) Zi' This value is subject to the accuracy of other
terms only through the extremely small term containing D3. (Dl) is then given by the square
root of the sum of the squares of EDI(Ai-Bj);i forj=1, 2, 3.

In developing these equations several equalities are used which introduce previously un-
mentioned parameters. The following comments describe those parameters and their
nomenclature:

e Because we are dealing with the measurement of quantities in many different
positions, a position index must be introduced. The numerical superscripts in
all equations refer to the positions.

e The vector Pl? (k =1, 2, 3) is approximated by the gyro readouts, therefore
G_
Pk = ( G)k
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GYRO CALIBRATION EQUATIONS

Scale Factor and Misalignments
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GYRO CALIBRATION EQUATIONS (Continued)
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GYRO CALIBRATION EQUATIONS (Continued)
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GYRO CALIBRATION EQUATIONS (Continued)

Unbalance
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GYRO CALIBRATION EQUATIONS (Continued)

Gyro Three
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GYRO CALIBRATION EQUATIONS (Continued)
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GYRO CALIBRATION EQUATIONS (Continued)

Product Compliance
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GYRO CALIBRATION EQUATIONS (Continued)
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GYRO CALIBRATION EQUATIONS (Continued)
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GYRO CALIBRATION EQUATIONS (Continued)

J Term
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GYRO CALIBRATION EQUATIONS (Continued)

Gyro Three
Pg At Atg
LJ/ael, =—— - [R/A®), — - [B /A®], ——
3 T 3 T o 3 T
Aw Aw Aw
Ag
- [GyBy/A®)y —
Aw
E .
w sinA
BR1p . BR1
- [(_}3'§3/A¢]3[——][T32 I51n¢2dt+T33 fcos(tzdt]
Aw
if J.:T = const = K
T _
wy = 0 (¢2>O=o
Then
Ad\ /G R Bgg GpBg
J={\" N" -} T+ + At
K /\At K K 2
E . 2 BR
W sin A At Kt 9 Tk2
-————f cos| — - tan ——l;R dt
KAt 0 2 Tk3
4-59



ACCELEROMETER CALIBRATION EQUATIONS

Scale Factor and Cubic Term
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ACCELEKOMETER CALIBRATION EQUATIONS (Continued)

Bias and Second Order Term
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ACCELEKOMETER CALIBRATION EQUATIONS (Continued)
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ACCELEROMETER CALIBRATION EQUATIONS (Continued)

Accelerometer Three
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where ('8) ., corresponds to the pulse count from the kth gyro over the total
time of dat§ collection.

- The vector P‘;‘( (k =1, 2, 3) is approximated by the accelerometer readouts,
therefore

PR = Byl -Cv)yy

where (Ty) kg and (T¥)k1 correspond to the pulse counts from the second and
first string of the kth accelerometer, respectively.

® The total time of data collecting will be recorded as a count (& n'{) from the
system clock, therefore

At = S'Il‘(EnTl‘)

where ST is the scale factor of the system clock. The subscript 1 serves to
distinguish the clock pulse train used in calibration from the pulse train used in
the Preprocessing computations.

- The total test table angle (A¢ ) will be recorded as a number of whole turns
(or a number of fractions of whole turns), therefore

Dy, = SP (Zn%)

2

where (Zn?) is the number of increments of angular displacement; and s? is
the scale factor which converts the number of increments to a finite angle.

In Section 3. 3 we presented a description of the 1aboratory facility with all of its measure-
ment and computational devices. In Figure 3-6 we showed the possible equipment interfaces.
For the purpose of calibration all instrument data collections will be accomplished with

the frequency counters shown in Figure 3-6. (See Section 2.1 of the trade-off document

for the reason why the counters are used.) The specific employment of the counters for

all positions is described in the Laboratory Procedures Manual in the sections entitled
Fundamental Modes. Also found in the Fundamental Modes sections are all events in the
collections, transfers. and computations during calibration in the form of flow diagrams
accompanied by descriptions of the activities.

4.4 PRECALIBRATION REQUIREMENTS

The required constants contained within the equations tabulated in Section 4. 3 were pre-
sented as functions of instrument outputs and parameters describing the environment inputs.
Before the data can be collected which is necessary as inputs into the equations, several
initial survey tasks must be accomplished.
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® The environment selections were presented in Sec%‘on 4.2 as choices of the ¢1
and ¢9 gimbal angles and the first column of the TBR matrix. The test table
orientation is, however, controlled bﬁ choices of four gimbal angles; therefore,
the choices of the first column of TBR must be expressed in terms of the gimbal
angles, which we know from Section 3 to be ¢3 and 94.

o The TBR matrix is a function of the TP! matrix as well as the #3 and ¢4 gimbal
angles. We rﬁust, therefore, determine TBI before we can equate the first
column of TBR to 84 and ¢,.

o The gyro bias and compliance constants are seen (see Section 4. 3.2) to be a
function of (among other things) the second column of the TBR matrix. That
column can be determined (once TBI, ®3 and ¢ are known) by a use of equalities
presented in Section 3.

e In all previous developments it was assumed that TFE (the transformation between
the test table base frame and the earth frame) was equal to the identity matrix.
In the operational laboratory this matrix will deviate (by small numbers) from the
identity matrix. It is, however, possible to correct for the deviation by the use
of bubble levels.

In the following subsections we present the manner in which all of the above tasks are ac-
complished. The order of presentation is the chronological order in which these tasks
should be accomplished in the laboratory.

4.4.1 TP survey

The initial activity subsequent to the attachment of the ISU to the test table is the determi-
nation of the orientation of the ISU body axes relative to the test table frames. This cor-
responds to the evaluation of the TBI matrix (see Section 3.2,1), In Chart 4-32 we see how
this is accomplished.

In Chart 4-32 we refer to the test table orientation used in the determination of TBI as
Position Zero. Position Zero can be any orientation; but the zero orientation shown in
Figure 3-2 might be the most convenient for it results in

(TIO rI‘OR TRT Tl‘F F E)-l

BE

T = I (the identity matrix)

BS SE _

(The matrix product T-° T T is functionally equal to the Mirror Alignment Matrix
shown in Chart 2-6. As mentioned in the discussion of the Mirror Alignment Matrix is
Section 3. 1.2 the particular evaluation of this matrix depends upon the particular georaetric
angles which are outputted from the autocollimators. At the time that the form of those
outputs are known, the exact form of ’IBS TSE can easily be determined.)

The TBI Survey activity is formalized as a '"Precalibration' activity in the Laboratory
Procedures Manual. It will most probably be accomplished very near the time that the
ISU is placed on the test table. It will probably not be necessary to repeat this survey
except when the ISU is removed from the table and then '"rebolted' in another orientation.
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CHART 4-32

TBI Determination

(1), ¢g, ¢g, and ¢2 from position zero and the

transformation from body to earth axes via autocollimator readings
(TBSO TSEO)

Given: a set of resolver readings ¢

Find: the matrix TBI which transforms from the body axes to the axes fixed

to the inner gimbal of the test table.

1. From the laboratory geometry definitions described in Section 3 we have:

7B _ (TBSOTSEO) (TIOOTOROTRTOTTFOTFE>—1

BSOTSEO

where T is given oy the autocollimators and

0 1 0
TIOO = cos ¢2 0 -sin ¢2
0 0

~sin ¢4 0 -cos o
L. -l

p— —

0 1 0
TORO =1 cos Q)O 0 -sin ¢0
3 3
.0 0
L—sm ¢3 0 -cos ¢3
0 1 0
TRTO =| cos cbg 0 -sin ®g

-sin ¢(2) 0 -cos ¢gj

0 1 0
TTFO =| cos ¢(1) 0 -sin ¢(1)
.0 0
~sin ¢1 0 -cos ¢>1 ]
1 0 0
TFE . 0 1
0 1
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4.4.2 Test Table Resolver Settings

The calibration selections in Section 4.2 were accomplished by dictating values for d1

¢2 and the first coluglﬁ of the T BR matrix. In implementing those selections it is neces-
sary to equate the T choices to the controllable ¢3 and ¢, gimbal angles. In Chart 4-33
we see the functional relationship between the first column of TBR and #3 and 4 (and TBI
which is known from the procedures developed in Section 4. 4. 1),

In Chart 4-34 we present the ¢15 P95 B35 and 4 settings for all fifteen calibration positions.
Included in that chart are the equations for the determination of ®3 and ¢4 from the choices
of the first column of TB R. Those equations are special cases of the arithmetic contained
in Chart 4-33 for Positions 1, 3,5, 13, 14, and 15. A duplicate of Chart 4-34 is presented
in the Laboratory Procedures Manual. The numerical solutions for ¢5 and ¢, must be ac-
complished and placed in the chart before calibration can be accomplished.

4.4, 3 TBRm Determination

The gyro bias and compliance computations presented in Section 4. 3 are functions of
(among other things) the second column of the TBR matrix for Positions 1,3,5,13, 14,
and 15. The TBR matrix is a function of ‘253 and ¢, (see Section 3.2). The gimbal angles

3 and ¢ ¢4 are known by the use of the computations presented in Chart 4-33. In (]Jshart
4-35 we present the computations which develop the required second column of T~ from
the known ®3 and ¢ 4 andgles (and TBI as given by the computations presented in Chart 4-32).

Although not required for calibration purposes, the computations of the third column of
the TBR matrix are presented for information purposes in Chart 4-35. The first column

of TBR is known because it was utilized as the environment selection control parameter.

4.4.4 Bubble Level Corrections

Throughout the development of the calibration techniques it was assumed that the test table
base frame is aligned with the earth axes, that is:

TFE

=1 (the identity matrix).

In practice this matrix will deviate from identity, due to such things as solar heating of

the cuilding and settling of the building. The resultant low frequency motion of the base
relative Lo the earth can be corrected (immediately before calibration data collection) by
the use of buble levels. There are three ways in which the corrections can be implemented.
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CHART 4-33

93" o Equations

TBI BEm

BRm T BRm
11

Given: 21 » T3

» T » T

: . m m
Find: ¢3 and ¢4

1. We know that
TBRm - TBI TIOm TORm

or (TBI)TTBRm= TIOm TORm

BI

where T is given from a prior survey and

m
cos ¢3 0

m

TIOm ORm _ cos ¢,

. m._.. .m
sm¢>3 s1n§2>4

sin ¢:r3n cos ¢fln -8in (bfln

L

2. Solving for the first column of TIC)mTC)an

we have

.oom
=-Ssin @3
cos ¢§n sin ¢‘r1n

cos ¢:r3n Ccos %r}n

m _ ~BI ~BRm Bl .BRm
cos 837 =Ty) Typ + Tgy Top

..ooom .. .m _ Bl
sin q>3 sin ¢4 —le T11 +T22 T21

.. .m m _ Bl ~nBRm BI nBRm
sin <z>3 cos ¢4 —T13 T11 +T23 T21 + T

BI nBRm
+ T3 T3y

BRm Bl . BRm T?ZI TBRm

33 T3g

31

BRm

which gives the desired functional relationships.
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CHART 4-3

BRm

T Determination

Given: ¢:I3n, ¢£n, and TBI

Find: TBRM

1. We know that
TBRm - TBITIOmTORm

BI

where T is given from a prior survey and

cos ¢§n 0 -sin ¢:r3n

TIOmTORm =|sin ¢:r3n sin ¢}1n cos ¢f}n cos ¢:1)’n sin <Z>fln

sin ¢§n cos ¢fln -sin ¢fln cos @én cos ¢fln

2. The first column of TBRm is the calibration control parameter. The values of
this column have already been included in the calibration equations.

3. The second column of TBRm

which is the only column required for inclusion into
the calibration equations, is:

BRm _ Bl m Bl . m
le = T12 cos ¢4 - T13 sin ¢,
T?sz = T?zl cos ¢f}n - T% sin ¢‘11n These equations need only be solved
form=1, 3, 5, 13, 14, and 15.
BEm _ Bl m Bl . m
T32 = T32 COs @4 - T33 sin ¢,
4. The third column of TBRm, which is not required in the calibration equations, is

given for information:

Tﬁ?m = -Tﬁl sin ¢§n + szl cos ¢§n sin wfln + TE% cos ¢§n cos @Zn

T2B3Rm = -T?ll sin ¢§n + ngI cos Q%n sin ¢£n + T2B:§ cos ¢:r3n cos ¢‘r1n

T3B3Rm = -T3BI sin ¢:I3n + T3BZI cos ¢>§n sin ¢£n + T?g cos @én cos ¢‘11n
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Whether accomplishing a complete or partial calibration, the above four activities occur
in the order presented. In the following paragraphs we will briefly describe each activity:

Turn-On

These activities include all of the various housekeeping tasks which include such things as:

®¢ Power-on to equipment

e  Monitor equipment operation

The detailed specifications of these activities cannot be tabulated until the laboratory facility
is completely defined. In the Laboratory Procedures Manual a space has been allocated

in Part I for inclusion of the details of turn-on to be specified at the time when the labora-
tory is configured.

Precalibration

At some time, between the placement of the ISU on the test table and the initiation of cali-
bration , the following system survey activities must be accomplished:

e Determine TB!
e Find <1>3 and ¢>4 for all calibration positions
®  TFind the second column of the TBR matrix for all calibration positions

e Store g, wE, X, ST, and S.¢

The first activity locates the ISU relative to the test table. The second activity determines
the inner and outer test table gimbal angles settings for all calibration positions. These
settings were shown in Section 4, 4.2 to be a function of the TBI matrix. The third pre-
calibration activity computes the second column of the TB R matrix, which was shown in
Section 4. 3.2 to be necessary for computing the gyro bias and compliance terms. The
fourth activity records system numbers required in the calibration equations. All of these
activities are described in detail in Part I of the Laboratory Procedures Manual.

Calibration

At any time subsequent to the completion of the Turn-on and Precalibration activities, the
ISU can be calibrated. We formally define the calibration activities as the completion of
the following list of activities for any or all positions:
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e Connect instruments to frequency counters

e Set frequency counters

e Set test table resolvers with bubble level corrections
° Set table speed

e Collect data

e Transfer data to computer.

A complete calibration would accomplish the above activities for all positions. The order
of positions is completely arbitrary; but the packages of six (1 to 6 and 7 to 12) will proba-
bly be accomplished in numerical order. A partial calibration need only accomplish these
tasks for positions required for the determination of the required constants. The details
of the above activities are found in Part II of the Laboratory Procedures Manual.

Computation

Computation is very simply the solution of any or all of the equations in Section 4.3.2. A
complete calibration requires all computations and a partial calibration would require the
solution of only a few of the equations in Section 4. 3.2. The details of the computation
procedures are described in Section II-4 of the Laboratory Procedures Manual,
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SECTION 5
DEVELOPMENT OF AL IGNMENT TECHNIQUES

In Section 2 alignment was defined as the initialization of the matrix which transforms from
an ISU-fixed set of axes to a navigational set of axes. The ISU axes were defined by use of
two mirror normals and the navigation axes were defined as an earth-fixed, local-level
frame. Transformation of this alignment problem to any other alignment problem using
different ISU and navigational frames is then a simple problem of coordinate transformation.
The discussion in Section 2 revealed that alignment could be accomplished by measurement,
in body and/or earth-frame, of the components of two system vectors. Three different
choices of these vectors lead to the three alignment techniques: Mirror Alignment, Level
Alignment, and Gyrocompass.

Further analyses in Sections 2 and 3 lead to the functional description of the three alignment
techniques shown in Chart 5-1. In this description each technique is further broken down
into four basic types of computational routines. These are:

® Preprocessing Computations
¢ Estimation Routine
* Estimation Matrix Computations

¢  Alignment Matrix Computations,

These routines have as inputs certain a priori information, calibration constants, instru-
ment outputs, and/or outputs from other routines as indicated in Chart 5-1,

Before beginning the detailed development of alignment it is important to note several points
which dictate the viewpoint adopted in the remainder of this section. First note that there
are basically three types of routines indicated in Chart 5-1. They are Preprocessing,
Estimation (including both Estimation Routine and Estimation Matrix Computations), and
Alignment Matrix routines. The mathematics of the Preprocessing Routine was developed
in subsection 2.2,5 and will be considered only briefly here (in Section 5. 1). The Alignment
Matrix routme uses estimated values of g*B By and mirror azimuth (Level Alignment) or

g Bk and w By (Gyrocompass) to initialize the alignment matrix T. This relatively
straightforward mathematical problem has been discussed in Section 2 and is considered
again rather briefly in Section 5.5. The remaining routine, Estimation, is the major sub~-
ject of discussion in this section. Before developing various estimation techniques, the

5-1



’--------—--'-

CHART 5-1
ALIGNMENT FUNCTIONAL DIAGRAMS
Mirror Alignment
One & Two Mirror Azimuth Angles .
Alignment T
X s Matrix —>
One & Two Mirror Zenith Angles .
> Computation

Level Alignment
a priori Estima'tion
Information Matrn::
Computations
Accelerometer
Calibration
Conastants J
4 y
N )
Accelerometer [Preprocessing| /2 Bydt | Egtimation | & Bk | Alignment |
‘ : . Matrix [—>
Readouis Computations Routine "
Computation
Azimuth of the One Mirror T
Gyrocompass
a priori Estimation
Information Matrix
Gyro and Computations
Accelerometer
Calibration
Constants
y /‘\
Accelerometer, in‘lakdt\ 85y
Readouts Preprocessing Estimation | —"~ Ahgnn?ent T,
Comzoutations fw . Bkdt Rcutine ,,)E . Bk Matrix
Gyro : = - S = =Kl Computation
Readouts




environment and sensor noises are modelled in Section 5.2. Then in Section 5. 3 and 5.4
specific estimation techniques are developed under different assumptions. The explicit
equations for the recommended alignment techniques are summarized in Section 5. 6.

Second, it should be noted that there is no detailed discussion of Mirror Alignment since
this section emphasizes estimation which is not relevant to the mirror alighment problem.
The Alignment Matrix Calculation discussion of Section 5.5 is, of course, applicable to the
mirror approach when mirror azimuth and zenith angles are given,

Third, the reader should be forewarned of the emphasis on Level Alignment over Gyro-
compass in this section., It was found, not unexpectedly, that the alignment errors in
Gyrocompass may easily be two orders of magnitude larger than those expected in Level
Alignment. This is, of course, mainly due to the low signal-to-noise ratio of the earth-
rate signal in gyro quantization noise. Further details of this comparison of Level Align-
ment versus Gyrocompass are given in Section 5 of the trade-off document (Volume 2)
where a Monte Carlo simulation of an alignment problem is used to obtain quantitative
results.

Finally note that Section 5 of the trade-off document justifies many of the comments included
below. Section 5 of Volume 2 includes further discussion of the assumptions required and
the results of a simulation of the proposed estimation techniques. It is important to note
that in several places important assumptions have been made with little justification when
the data was not available to include completely realistic values. The collection of ac-
curate data about the noise environment is a very difficult and expensive problem. iiow-
ever, all results of this study have been presented in such a manner that when more ac-
curate data is available, modifications can easily be made.

5.1 PREPROCESSING COMPUTATIONS

The Preprocessing Computations yield integrals of angular velocity and acceleration in the
body frame:

t+ At t+ At

w.Bdt J g-]_sjdt , i=1,2,3,
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The inputs to the computations are the counter outputs (T y)kz, (Ey)kl, (z G)k’ and (& ng),

k =1,2,3. The calibration constants for each sensor are required, along with the trans-
formations from the sensor axes to body axes QA, QG. The notation is defined in Section
2, The preprocessing equations are developed in subsection 2.2.5. They are reproduced
in Chart 5-2. In this chart, dots at the left hand margin indicate the alternative computa-
tions used for Level Alignment or for Gyrocompass. Note that At was assumed to be

small in the development of the equations in Section 2.2.5. This restriction is not required

in the Preprocessing Computations used in alignment since the ISU is relatively stationary.
5.2 ENVIRONMENT AND SENSOR NOISE MODELS

Before developing processing techniques, we must describe the effect on sensor outputs of
various random inputs: environment translational acceleration and rotation, accelerometer
noise, and gyro noise. This section is a continuation of Section 3.2.2 which describes the
general characteristics of the environment noise. In the development of estimation tech-
niques, quantization errors are not included. Several of the resulting techniques are tested
with a Monte Carlo simulation to determine the effect of quantization, computer word length,
and anomalous noise inputs. The results are presented in Section 5 of the trade-off docu -
ment. In the following paragraphs, we first describe the environmental components of the
sensor inputs (5.2. 1) and subsequently describe their effects on the observed sensor out-
puts (5.2.2).

5.2.1 Sensor Input Acceleration and Angular Velocity

It is convenient to define a "level frame' that moves with the ISU and whose average orien-

tation is collinear with the earth axes, as indicated in Figure 5-1, The body axes are fixed
relative to the level axes. If there were no environment disturbance, the level frame would

coincide with the earth frame.

Let a1k be the acceleration of the level frame along Ek' Then

L1 gU Ly + oy
3, T | 22| T U Lg ey
23 gUrLg +%3
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CHART 5-2

PREPROCESSING COMPUTATIONS

Inputs (E-y)kz,(}:)')kl, (z6 )y.and (Eng )for k=1, 2, 3

The outputs J‘t

computations:

Level GC

t+ At (u_,

-I_Bk)dt and _['tt+ at (a }}k)dt (k =1, 2, 3) are given by the following

= E(z:w)kz - (Ey)klj

= (Z6)y

P AL ¥

=Sz(2“2)
G

PL(a®), - (R), At

n

Pl (D)), - (Do) At

m

((w-Gy) at/at

[@-A)) at)/at

= (@4

[0 0 1i[@a))

=11 0 0|@&y)
10 o|l@ay)
0-1 0)[@A)]

=0 01| @ay
01 0|l@3ay

) o ((a-Ap at?
. ((,_L .(_}k)
[} [] (2 . ék)
. (3. * (—;k)
. @op
. (a' §k)
° ° L-tt+At( .gk)dt
. o £BYa 4 gt

t+4 G
r we dt = T
.“'t t(_ B,) z Q.

© e Menga- Ty,

where
. . QG
. D) QA

It

= {(wG)ati-I(B), (-G )+(By), @-0 )~ (Bg), @:S,) At

- (O @G + (Cgg)y @ 5% at

- LCy @+ Ga- 5,0+ Cog @ 0@ )+ (C), (3G, )(a-0,) "at

- L@ EG? + Q) (@5)(@8) at

= [@AJAL - (D), @ A%t - (D,), @ A)%at

1 6By -Gy By
-Gy By) 1 -Gy By)
"G5 B -Gy By v
1 -{ap By (4 By
“(éz‘ 1_31) 1 ‘(éz‘ }53)
-(A3'By) -(Ag By !

Ct+AL
“t

. t+At(a‘ Ai )dt
¢ 202

(‘i"'gl)dt
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where &y, Oy, d3 are the environment-induced accelerations along L‘l’ 142, _1_43. The
expected value of . is zero. To first order, L;+U = 1 since the rotation from vertical
is the order of one minute of arc or less. Further, g-l_.z and g-143 can be represented
as small rotations about Lg and Lo, respectively. Let 6g4=-U-Ly and 6, = U- L.
Then, to first order,

g +y
&, = 8%+
g62 + g
Further, the angles 62 and 63 have zero expectations. Let T 1 be the orthogonal trans-
formation from the level frame to the body frame. Then the acceleration in the body frame

ag is

0 o

1
EB =‘ TIEL = Tl 0 + Tl —g93 + Tl az
0 g8 3

The first term is the average gravitational acceleration in the body frame. The second
term is the variation of the acceleration due to level frame rotation. The last term is
the environmental acceleration disturbance. The power spectra of oy, Oy, g, 62, 63
can be obtained from environmental test measurements.

Next, consider the angular velocity. Let Wk be the angular velocity of the level frame
about I—‘k' Then

e | —wEU-L + wEN-L + B8 ]
“L1 U="Z1 NZ"21 1
o | B E
@ = vz | 7| @gltly + oyN-Ly + By
E.. Eqy.
“r3 | | “v@'L3 + oNN-Lg + A5 |

where w%g + wIE\:Ilj is the angular velocity of the earth and Bk is the environment-

induced angular velocity about l“k‘ To first order, I_J_-L,l = §'143 = 1. Further assume
that there is no rotation about U and hence B1=0and N-Ly = 0. Also, By =8, Bg=0g4
and I_\Iﬁ-lJl =89. Hence,

’
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B
E
wy, T _wU63
E
wUBZ +
E
“g
wg = T1 0

Wity |
+ 8,
&y |
_““592- —0 |
+ T1 563 + T1 é2
“562 b

where “g is the angular velocity in the body frame. These three terms have interpreta-

tions analogous to the corresponding terms in a

Since the system has been calibrated,

axes is known, Let T2 transform ag

wg to the gyro input axes. Let

and

ag-

the transformation from body axes to sensor input
to the accelerometer input axes; let T3 transform

2y = Tsap

¢ = T3¥p

These vectors represent the sensor inputs,

There are two alternatives in estimating gravity and angular velocity. First, we can
estimate the average components in the body frame:

g
T10
0

and T,]0 (5-1)

Second, we can estimate the components at some time t* in the future, t* > KAt:

T

g
0] + T, -g93(t*) (5-2)

|_0 i Lgvz (t*) _I
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wg -y (t%)
T, 0 + T -w§e3(t*) (5-3)
E E
i wy § __wUGZ (t*)-

Where the strapdown system is initiated t* - KAt seconds after the last measurement.

Let t* - KAt = ¢, the prediction interval,

5.2.2 Observed Sensor Qutput

In the development of a processing method, we will assume that the gyros and accelerom-
eters are linear with unit scale factors and zero bias., Actual values will be used in the
application to a real alignment problem. Further, we assume that the gyros and accel-
erometers have relatively large band widths, i.e., we will neglect the sensor dynamics.
The preprocessed sensor outputs are integrals of acceleration and angular velocity.
Namely, the outputs are:

t t
PAY = [ a,(mar + [ n,(madr
t- At t- At

t
P (t) I EG(T)dT + _IlG(T)dT

t- At t- At

where nA(T) and nG('r) represent noises introduced by the sensors. Further the outputs
are observed at discrete times At, 2 At, KAt Denote these outputs by P (J) and

P (]) It is convenient to transform the outputs P ( j) and PG(]) to the body frame: namely

A dae ) [ ol !
PB(j) = T2 E G) = ! 'Tl 0]+ T, g93_(_1_') L, dr
G-nael | o 26,7
jat \ 0‘1(7) 1 nAl(T)
« © Tyl o) |+ Ty npo(r) | o dr (5-4)
(i-1) At/ 0‘3("') nA3(T)
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~ 7))
E
. E —wy 84(T)
pGi) = -1 G, . JAtY |eu E w
Pg() = T3 P -'J -)T1 0E + Ty |-oy 63507 dr
(J—I)At (L‘N wg 52(7-)
~ - (5-5)
jar |9 iat NG |
+ Ty 8y(r)| A7+ ] T3 | ngylm | dr
(j-1) At 83(7) (j-1) At n;a(7)
L .

Since T 1 is orthogonal, and since Ty and T, are nearly orthogonal, T 1 ofT) + Té 12 AlT)
and T3' g_G(T) have the same power spectrum as (7) + EA(T) and EG(T), respectively,
This simplification will be used in equations (5-4) and (5-5) since only second order
statistics are used in the following discussion.

Note that the components of a(7), n A(T), and n G(1') have been assumed statistically
independent and identically distributed.

In the following sections, estimation techniques are developed based on the above models.
5.3 ESTIMATION OF GRAVITY IN LEVEL ALIGNMENT

Estimations of the components of gravitational acceleration in the body frame are based on
the observation equation

A, jat X 0 ( ,
PR() =] Tl 0| + Ty|-geg(r) | + a(r) + n,(n)yar (5-6)
(j-l)Atz 0 g 9,(r)

with j=1,....,K, Using the observed accelerometer outputs in the body frame, Bg(j)
(i=1,...,K), our goal is to estimate the average components (5-1) or instantaneous
components (5-2) in the presence of the disturbances oft) and EA(t) given in (5-6). The
former problem is described in the following Section (5. 3. 1); the latter problem is
discussed in (5. 3.2). Note that the basic operation is differentiation; we obtain ac-
celeration from velocity measurements.
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In the following subsections several estimation methods are developed from mathematical
statistics. A general discussion of Level Alignment techniques appears in 5. 3. 3; and the
recommended technique is presented in 5.6. The characteristics of several techniques are
described in Section 5 of the trade-off document. These techniques are simple average,
posterior-mean estimate of average components, posterior-mean estimate of instantaneous
components, and iterative estimate of instantaneous components.

9.3.1 Estimation of Average Components

The objective here is to estimate the average gravitational acceleration components in the
body frame namely:

Let gB(t*) denote the true gravitational components at time t*, Then the rms deviation of
the estimated average components (say § p) from the true components can be bounded,
namely:

ET(ggt")-8p)  pt)-Ep) 1 = Elegt*)-Ep)  (@at*)-Ep) 1 + EL@p8p) @ gEp)

- 260502 (£ - ) | - {| B lep 1) Tt By |2

= oA T A JJ1/2]2
+ [EL(EB'EB) (_g_B“gB) ,} ! 2‘

The first term corresponds to the rotational motion of the level frame about the average.
The second term corresponds to the error in g—B as an estimate of éB’ The objective is
to minimize the second term, accepting the first term (the error from the motion about
its mean).

In the following subsections three approaches to estimation are considered: simple average,
least squares, posterior mean. The first approach does not use any a priori information
about the noise spectra, alignment, gravity or earth rate magnitudes. The second approach
uses prior measurements of the noise spectra. On the other hand, it does not include the
prior geophysical measurements of gravity and earth angular velocity. The third approach
uses a priori information about alignment, gravity magnitude, and earth rate magnitude
plus measurements of the noise spectra, but the noises are assumed to be gaussian
processes. This third approach has several advantages: (i) prior geophysical measure~
ments are included and are weighted with their accuracy; (ii) the estimation techniques are
comparabie to those obtained from a ieast squares approach in compiexity; (iii) the resuiting
techniques can be used recursively to continuously update the alignment matrix; (iv) the
posterior-mean estimate is optimum with respect to a large class of loss functions, not
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just quadratic. From noise simulation, we find that the posterior-mean techniques are
not sensitive to the gaussian assumption. (See Section 5 of the trade-off document. )

5.3.1.1 Simple Average

This approach is based on the assumption that we do not have any prior information about
the noise, gravity, earth rate, or alignment. In this case

Note that the same estimate is obtained if K=1; and At is replaced by KAt,
5.3.1.2 Least Squares

Before developing a least-squares technique, it is convenient to define certain notations.
Let X be the 3K vector whose components are

x = pA (p)- = pA (4. - pA
X, =P 1(]), Xj+K - PBZ(])’ X]+2K - PB3(])

At 0 0 (
:|> K-rows

At o ol

0 At 0 '
H, = : | K-rows

0 At 0 \

0 0 At '
. 1L K-rows

L0 0 ai)

jat
Let o ,., = 7)d ithr =2,3.
H) " gy ay 54T e =2,
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Let ¢ be a 3K vector with components
q)j =+ g(T1)13 ¢2(j) - g(Tl) 12 ¢3(j)
¢j+K =+ g(T1)23 ‘Dz(j) - g(T 1)22 ¢3(j) (5-7)

o . . .
12K = +g(T )33 #9(i) - &(T1)gq ¢5(J) J = L,2,...,K

0]
. 93
. Ry = ey K . =
Let 27 = (9(1),...,95(K) and z3 - (43(...,?5(K)). Then & Hz[EJ

where H, is the 3K x2K matrix defined by equation 5-7. Let N be a 3K vector with
components
jAft Los(T) (1)
N, = | va{T) +n, (1)} dr

jat
Nj+K =(jj:1)At [az(-r) +1,5(T) 1dr

JjAt

J yidr
(j-1Aat

.
h0t3(‘r) +1

Niok = A3t

with j =1, ..., K. Then the basic observation equation 5-6 can be rewritten as

X = Hjgg+ ®+N (5-8)

The objective is to estimate gB in the presence of noise ® + N, given the observationsX.
The covariance of this composite noise is the sum of the covariances of @ and N since
they are independent:

Zo,N T Z;‘I’ﬁ&ZN

5-13



’-----

Further

where & 00 is a K x K matrix with elements

(Ew)ij = E[¢2(i) %07, i, j =1,...,K,

Note that 62 and 63 are assumed to be independent and identically distributed.

Ea+n 0 0
Z:N = 0 Z;oz+n 0
0 0 Eoz+n

where Ea +n is a K x K matrix with elements

(E(“n)ij = EENiNJ.]' , i, j=1,..., K.

Further,

These covariance matrices can be expressed in terms of the correlation functions,

namely
At i 0 )
Eloy(1) 95(j)1 = (At-pl gu(p+(j-D)Aat)de + [ [At+pio) (p+(j-i) At) dy
PACRG ‘0 8 Cat ]
At 0 ]
EINNI = [ [at-u] gy (b+(j-1) At) dp + | LAt +p] 9 (1 + (j-1) At) dp
] 0 ZAt

ot

5-14
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where ¢, ¢ , and ¢, are the correlation functions of 6(t), (1), n(r), e.g. » P9 = E(8(0)6(7)).
From prior experiments we estimate the noise power spectra and correlation functions. *
The above integrals may be evaluated numerically or mathematically when the correlation
function is approximated by a mathematical formula. For example, assume

_ -Co|T
¢9(T) =cye 2' '
Then
2c, e~Cp |-il At
(Ew)ij = o L cosh (cy At) -1, i#j
201
- -c2 At
(2¢¢)11 - 9 [e -1 + C2 At]
(Cz)

The same methods can be applied to the other covariance matrices,

Note that Hz is evaluated by using prior estimates for the value of T1 and g, denoted by %1
and g. Precise values are not needed since H2 is used in the noise model. Corrections to
H2 would be of second order,

Based on the composite measurement equation (5-8), the objective is to find the unbiased
linear estimate of gB’ say gB( X), which minimizes ElgB - g()_(_)lz as a function of g(X).
It follows from the Gauss-Markoff theorem that gB()_(_) is the value of g that minimizes

MX - M Hygl?, where M is the nonsingular matrix such that ME,_M® = I *»

’---

*Spectra data is given by H. Weinstock in ""Limitations on Inertial Sensor Testing Produced
by Test Platform Vibrations', NASA Electronics Research Center, Cambridge, NASA
TN D-3683, 1966.

**See H. Scheffe', Analysis of Variance, John Wieley, 1959, p. 14.
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In fact gB()E) is a minimum variance estimate for each component of gB. One can show that

~ T -1 - -
gX) = (] T, yH) T HTE) X (5-9)

Further the expected value of gB()_(_) is g_B, even if we have used an incorrect covariance
matrix Tg . N+ The covariance matrix of gB is

El@g - Ep) @p- g 1= @) T3, v )™

(5-10)

5.3.1.3 Posterior Mean
In the following discussion we assume that 6.(r), o7), _l_‘_lA(T) are gaussian processes.

Hence the "optimum' estimate of gB is the posterior mean. This estimate is optimum
with respect to any loss function L(€) on each component where*

(i) L(0)

1}
o

(iii) I(€) L(-€).

For example, let 5 be an estimate of gg+ Then

- ~ 2
E gBl_gBl
and
- ~ 2
E|gp2-8p2
and
E — —I\ 2
€83 5B3

*See S. Sherman '"Nonmean -Square Error Criteria" IRE TRANS. ON INFORMATION

TIan
THEORY, Vol. IT-4, No. 3, p. 125,
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are all minimized when 313 is the posterior mean. As a second example, let € 12 62, G3
represent the maximum admissible errors in components of gravity. Let

0, |€| = e,
Lj(e) :31: :e: > 612
Then | |
BILyEp 1)) = Puf|Enitnl ~
and ElLy(Bpy-fpo)) = Pr;|532‘§132| > S &
and E(Lg(Egg-8pgy)! = PrglEB:;'@le g EB%

are all minimized when 3}3 is the posterior mean. (The expression "Pr {-}" denotes
“probability that {-}".)

To evaluate the posterior mean, we first determine the conditional distribution of X, given
_g_B. In this subsection the notation is the same as that in 5.3.1.2, From equation (5-8),
it follows that X is normally distributed with mean ng-B and covariance Z)@ AN°

From prior observations we have an estimate of orientation of the ISU; and hence we have
an estimate of Tl’ say 'NI‘l. Also we have an estimate of the magnitude of gB’ say g. With
these estimates, a prior distribution can be defined for gB’ namely, gaussian with mean

g
0
and covariance
g 0
s 22 0 T
0 0 ~2 2

where o_ is the rms error in the estimate of lgBl’ and Ty is the rms error in the estimate
of vertical (expressed in radians).
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This prior distribution implies that the distribution of g-B is isotropic in a horizontal
plane.

Applying Bayes formula we find that the posterior distribution of gB’ given X, is gaussian
with mean

. _ Tx-1 -1,-1 Ts-1 1~
BpX) = (HyZg NH)+Zg) (HZp X + I3 gp) (5-11)

and covariance matrix

_ uTy-l
Ty = (H1Zg NyHy

szl ‘ (5-12)
g

The estimate gB (g) represents the optimum combination of the measurements X and

prior data weighted by their respective errors. Note that the covariance is

E[(-—gB - gB X)) (-E-B - EB()_(_))T] = (H'fE (-I;}-N Hy+ Zg: 1)'1

If our prior alignment information is poor, the posterior-mean estimate reduces to the
least-square estimate. Specifically, aso_-+« and P then Z~ l*-» 0 and expression
(5-11) approaches expression (5-9). Also the covariance (5-12) approaches (5-10).

The cstimate (5-11) and covariance (5-12) are the basis for an iterative alignment technique.
Specifically, the initial gB 1 Eél) are obtained from K measurements based on éB and

Eé’:. The second estimate g 53) and covariance zg) are obtained from a second set of K

measurements based on gg) and Zﬁgl); etc. This iterative technique is sub-optimal since
we are summarizing all of the prior measurements in terms of _§_ g) and E(é) . Atrue
recursive "least-squares' technique involves significantly more computation since suc-
cessive measurements are correlated.* Also, all back measurements are used in the
current computation. The intermeasurement correlation can be eliminated by augmenting
the measurement variable, ** This approach also results in a very complex estimation
procedure., From a practical viewpoint, the sub-optimal technique described above is

a reasonable compromise.

*P. Gainer, ""A Method For Computing the Effect of an Additional Observation on a
Previous Least-Squares Estimate'', NASA Langley Research Center, NASA TN
D-1599, 1963,

**See M. Aoki, "Optimization of Stochastic Systems", Academic Press, 1967, p. 38ff.
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5.3.2 Estimation of Instantaneous Components

In the previous subsection we developed several techniques of estimating the average
components of acceleration

o O m

In this subsection the dbje ctive is to estimate the instantaneous components at time
t* > KAt; i.e.,
g 0
Ty10 [+ T, -g63(t*)
0 gez (t*)

In the following discussion we assume that the stochastic inputs 6]. (r), «(7), n A(‘l') are
gaussian processes. The discussion in Section 5. 3. 1.3 applies here; the posterior mean

will be-used to-estimate instantaneous components, If our prior alignment data is poor,

the posterior-mean estimate reduces to the least-squares estimate.

The vectors X, N, ¢, ¢5, and gB’ are defined in Section 5.3.1. Let S* denote the
instantaneous components i.e.,

g 0
S§* =Ty + T, -g93(t*)
0 ng(t*)

To obtain the conditional distribution of $* given X, we first obtain the joint distribution
of (S*, X). The components of (S*, X) can be expressed in terms of fundamental random
variables as follows:

S = &pj + (Ty)38% - (Typedy , i=1,2,3
X; = gpiAt + (Tyy3e9() - (Tyypefgli) + N;
Xk = Bpaft + (Typ3899(D) - (Tylapgeg(l) + Ny x
Xiok = Ep3At + (Tg3880(1) - (Ty)gogeq(i) + Ny op

e
1}
Pt
o
W

H
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or in matrix form as follows:

where _Z_T is the vector
T - - - . , -
?_ = [gBl’ €p2’ &p3> N]_’ Ty N3K: 63? Q)z(l); *ty ¢2(K), 9’5’ ®3(1): Tty ‘93(K)-|
and where V is the corresponding matrix, Note that V can be evaluated using prior

estimates g and Tl, since they only enter as multipliers of ¢, and ¢,. A prior distri-
bution of gB is based on prior alignment data — namely, gaussian with mean

e
0
and covariance

_ g -

o 0
e & 2 2 ’ T
s -~ o
~2 2
0 0 g-og

a similar prior distribution was used in Section 5.3, 1.3. The variate Z is gaussian
with mean

—Z'T

= [éBl’ §B29 §B3, 0: ccy 0!

and covariance



e L 13
_giz_l_l_____l__|____
1“N| | I 11_ 3K
_____ e - -
RIS Y
1 |c-1| ||
T, = T K
|1 %! |
| | Tc—ic cee C 1
I i T DA
g |c'1_lr z
. ‘ K
| | : !c'Kl °0
| l | i | _
3 3K 1 K 1 K

where
g = ELEP* S
At
¢; = E[65s,(i) = 6{ P (T - (K+1-j)At - €)dr
with t* = KAt + Et.
. ; -b2|T|
I ®g is approximated by bje , then
Co = b1
P1 ba [(j- 1At - t*x]_ boAt
¢, = ——e Le - 1]
Py
S* = T
Hence, ( i > is a gaussian variate with mean VZ and covariance VEZ V-~ . The condi-

tional distribution of S* given X is gaussian.t To evaluate the conditional mean and co-
variance, we must partition the mean and covariance matrix as follows:

T See T.W. Anderson, "An Introduction to Multivariate Statistical Analysis', John Wiley,
1958, p. 27ff.
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_ a A B
vZ =| !| and (VI, vI)-1 . T
- ay B C
where ay is 3x1 and A is 3x3. The conditional mean is
ko _ -1 -1
The conditional covariance is A'l. Note that
~ ~ ] -1
EUs* - p)(s*-8p)") = A

The discussion of iterative techniques in subsection 5. 3. 1.3 applies here. The
estimate (5-13) can be used in such an iterative technique.

5.3.3 Discussion

Several level alignment estimation techniques were suggested in this section, A Monte

‘Carlo simulation was performed to select the best estimation technique, The simulation

is discussed in Section 5 of the trade-off report. Three techniques were considered:
simple average (5.3. 1. 1), posterior mean (5. 3. 1. 3), and instantaneous estimation
(5.3.2.1), Several values of K, At, and TEB were tried, The effect of nongaussian
noise was also investigated. The instantaneous estimate is superior to the other estimates,
in some cases the rms alignment error being one-half the alighment error obtained with
the simple average. The instantaneous estimate is selected as the recommended technique,
The simple average is selected as an alternate technique, since it is computationally less
complex,

The simulation was also used to investigate the characteristics of the recommended
estimation techniques. The results of the simulation suggest the following conclusions
for level alignment:

L The instantaneous estimate is probably not sensitive to the noise distribution
(gaussian or nongaussian),

¢® Rotational motion from the environment is most probably the dominant source
of error for long integration intervals (At > 15 sec).

® The instantaneous estimate is more accurate than the simple average for

AL ON
L= 9V Dde,



¢ Instantaneous estimation and simple average appear to have comparable accuracy
for At < 15 sec.

¢ If At is held fixed at about 30 seconds and the quantization increased, the
instantaneous estimate becomes less accurate than the simple average.

¢ Low frequency environment noise is not the dominant source of error for short
integration intervals (At < 15 sec).

The above points are a summary of the detailed analysis of the simulation results included
in Section 5 of the trade-off document (Volume 2),

5.4 ESTIMATION OF GRAVITY AND EARTH RATE IN GYROCOMPASS

Estimation of the components of gravity and earth rate is based on the observational
equations (5-4) and (5-5). Using the observed sensor outputs gg(j) and _Ifg(j),

i=1, «+«-, K, we estimate the average components (5-1) or the instantaneous
components (5-2) and (5-3). The average estimate is investigated in the following
section, 5. 4. 1; the instantaneous estimate is discussed in 5.4.2. The basic estimation
problem in Gyrocompass Alignment is very similar to estimation in Level Alignment,
Note that the basic operation is differentiation. We obtain acceleration from velocity

l- (IR GBS MG SO m N Em A e h- -’

measurements and angular velocity from angle measurements. T e

In the following subsections several estimation methods are developed from a mathematical
statistics viewpoint. A general discussion of Gyrocompass Alignment techniques appears
in 5.4.3, and the recommended technique is presented in 5.6. The characteristics of

two techniques are described in Section 5 of the trade-off document. These techniques

are simple average and posterior-mean estimate of average components.

5.4.1 Estimation of Average Components

The objective here is to estimate the average gravity and earth-rate components in the
body frame — namely,

g wh
- _ -E
gg ~ Tl 0 and @y = Ty 0
0 wIE\:I

In using an estimate of the average components, we are neglecting the motion about the

average. The error bound derived in subsection 5.3.1applies to w™ a

W
£
o
o
=
o]
w
I3
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In the following subsections three approaches to estimation are considered: simple average,
least squares, and posterior mean. The first approach does not use any a priori informa-
tion about the noise spectra, alignment, gravity, or earth rate. The second approach uses
prior measurements of the noise spectra, On the other hand, it does not include the prior
geophysical measurements of gravity and earth angular velocity. The third approach uses

a priori information about alignment, magnitude of gravity and magnitude of earth angular
velocity plus prior measurements of the noise spectra. However, the noises must be
assumed to be gaussian processes. This third approach has several advantages: i) prior
geophysical measurements are included and are weighted with estimates of their accuracy;
ii) the estimation techniques are comparable to those obtained from a least squares approach
in complexity; iii) the resulting techniques can be used recursively to continuously update
the alignment matrix; iv) the posterior-mean estimate is optimum with respect to a large
class of loss functions, not just quadratic, From noise simulation, we find that the
posterior-mean techniques are probably not sensitive to the gaussian assumption (see
Section 5 of the trade-off document).

5.4.1.1 Simple Average

This approach is based on the assumption that we do not have any prior information about

|

the noise, magnitude of gravity, magnitude of earth rate, or alignment. In this case,

1 K 1 K
o A ~E G,
gg = Z PR(j) wp = Z Pg(j)
=B gatj=1-B -B KAt j=1-B

Note that the same estimate is obtained if K = 1 and At is replaced by KAt,
5.4.1.2 Least Squares

Before developing a least-squares technique, it is convenient to define certain notation.
Let X be the 6K vector whose components are

X.
]

1}
1}

A . A . _ pA
PR10), Xjx =Ppall), Xjox = Pp3li)

X

i

_ G G /. G
j+«3g = PB1U),  Xjux = Ppa(i),  Xj,5¢ = Pgali)

with j =1, 2, «-+, K. Let Hg be the 6Kx6 matrix
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At
} ;
At
At
: } ,
At
At
. K
At )
Hy = At
: } ,
At
At ?
: ’ N K
ot )
At
s
L At |
- - -
6
Let
J'jAt 6.(r)d
Py = T)drT
D Gpae *
jat
81 = | (r)dr
(- At
with r =2, 3,

Let © be a 6K vector with components

T

(q)]_: @2, % cb6}{)
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where
-
:13]_ = g(T1)13¢2(j) - g(Tl)lz ¢3(j)
q)j+K = g(T1)23¢2(j) - g(T1)22 3 (i)
¢j+2K = g(T1)33¢2(j) - g(T1)32 ®3(J)
gk = [TPen + (T 1300000) - (T)peho) + (T %0
+ (T3 %50) | > (5-14)
Yax = [-(Tg198 + (Tpasel ! %) - (Tpgpwdgl) + (Tyy % 0)
+ (T1)23 Q%-(J)
®i5K = [T 310N + (TPgzen) %) - (Tgp w23 + (Tpgy %)
+ (T1)33930) /

with j= 1, 2, -+, K,

Let g5 = [85(1), 25(2), ++, 85(K)]
and @ = Lo (1), 05(2), -+, 05(K)]
and 23 = L[23(1),85(2), ++-, 04(K)]
and (gg)T = [83(1), 23(2), -+, 23(K)]

Then equation (5-14) can be rewritten as follows:

k2
23
23
3

where Hy is the 6K x4K matrix defined by equation (5-14) and is introduced for mathe-
matical convenience, Let N be a 6K vector with components
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jat
N. = J [ozl('r) + nAl(‘r)]dT
Vooog-nat
jAt
jAt
Nijgg = (if_l)At[a3(T) + npg(r)ldr
P g
N, = n~q(T)dT
3K Gl
TR Gona
P o
N. = n T)dT
4K G2
" (-1) At
j At
Njsk = (]_J‘_ ) At“Gs(T)dT
- with j=1,2, .-+, K. The vector N represents the environment and sensor noises, The —

basic observation equations (5-4) and (5-5) can be rewritten as:

8p
3 E+g+y_
w
=B

(5-15)

[ >4
i
=

The objective is to estimate gB and _G_Jg in the presence of noise ¢ + N.

The covariance matrix of @ + N is the sum of the covariance matrices, since the noises
are independent; i.e.,

= E©+E

N
Further, _ | | -
|
|
5o |E¢>¢+l 010
z 0| 0
Tyt | Zprg+ I T
Ty = Hy Lo 2 %1 ___ __lH
o ] il Ik Pl ) 4
|l el et
T |
K | o | Zog+ Za+o+ ]
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where
Cpp)yj = ELo, (1), (j)]
Cyrpsdyy = Elsg(m)eg ()]
Copyj = E(g,(1)25 (i)’

with i, j=1, 2, «--, K, Note that 8y and 64 are assumed to be independent and
identically distributed. Further,

b
a+n
5 _ Ea+n
N - %
G
o z
- et . 7o S N
n _
where
(Eoc+n)ij = E[NiNJ‘] s i, j=1, -, K
Egyy = EENiNj] , i, j=8K+1, -+, 4K

These covariance matrices can be expressed in terms of the correlation functions (see
subsection 5.4.1.2). The following identities* are useful in simplifying E¢ +¢+ and

o .
pe+ -

a2

Elor(0)6(r)] = -—— EL8(0) 8(T)]
ar? :

d
El6(0) 8t (1)) = —EL6(0) 6(7)]
dr

*E, Parzen, "Stochastic Processes', Holden-Day, 1952, p.83.
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Note that H 4 is evaluated using prior estimates for the value of T1 and g, denoted by
T 1 and g. Precise values are not needed since H4 is used in the noise model. Corrections
to H4 would be of second order.

Based on the composite measurement equation (5-15), the objective is to find the unbiased
linear estimate of (g, uig), say (gp(X), Q]EB()_{_)), which minimizes EI gp - 5(29|2 as a function
of g(X) and minimizes ETQ_]ES -c_o(&)]gsas a function of w(X). It follows from the Gauss-Markoff
theorem that (§5(X), #5(X)) is the value of (g, «) that minimizes

.

where M is the nonsingular matrix such that MZ N MY =1, Infact —g-B(?-() and

2

G_-:E];(z_() are minimum variance estimates for each component of EB and @g One can
show that

&® Ty-1 1 . Ty-1
= (H3 T, Ny Hy) " H3Zg X (5-16)
GpX)

Further the expected value of gB (X) is gy, and expected value of ‘-Eg (X) is c?g, even if

we have used an incorrect covariance matrix Eq, +N° The covariance matrix of
~ I‘E .
(&g, <p)is

To-1 -1 |
(B z5t | Hy) (5-17)

5.4.1.3 Posterior Mean

In the following discussion we assume that the stochastic inputs are gaussian processes.
The "optimum' estimate of _E_B and “Eg is then the posterior mean as shown in Section
5.3.1.3.

To evaluate the posterior mean, we first determine the conditional distribution of X
given (_E_B, @g). In this subsection the notation is the same as that in 5.4.1.2, From
equation (5-15) it follows that X is normally distributed with mean

33
Hy and covariance Zg +N°

=h
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From prior observations we have an estimate of the orientation of the ISU, and hence we
have an estimate of Tl’ say T1 Also we have an estimate of the magnitude of g g5

(say g), the magnitude of wg, (say @ ) and latitude (say >\) from geophysical and
astronomical measurements. With these estimates a prior distribution can be defined

for gB — namely, gaussian with mean

and covariance

~

g~

It

g
Tl 0
0
52
g
~ ~2
T g2
2 2
g 9g

T
T3

where 0  is the rms error in the estimate of | _é_B | and %9 is the rms error in the

estimate of vertical (expressed in radians).

Similarly, we can define a prior distribution

for wg

and covariance

sin X
0‘

cos A

.

0

1

0

— namely, gaussian with mean

sinX 0 -cosX
T, 1 0
cosX 0 sin X
-cos X oi 0
0 |lo @,
sinX || 0 0 (@

w

0

0
E)Z

‘|

|

sinX 0 cos)
T
0 1 0 Tl
-cosX 0 sinX

where T is the rms error in the estimate of | wB i and T9u is the rms error in the

estlmated direction of wB (expressed in radians).

(=]

., =| 8
T I— E/~J
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Applying Bayes' formula, we find that the posterior distribution of (g_B , _@B) given X
is gaussian with mean

&g (X) gp
== [ Te-1 -1\-1f r_-1 -1
) = H3 E¢+NH3 +ET H3 E¢+N§- + Z:T E (5-18)
wp (X) ‘ “p
and covariance
_ Te-1 -1,-1

The estimates g(X) and c_b:g (X) represent the optimum combination of the measurements
X and prior data weighted by their respective errors.

The alignment procedure described by (5-18) and (5-19) reduces to a least squares
procedure when the prior measurements are very inaccurate. Also, this procedure
can be used recursively to update the alignment matrix (see Section 5. 3. 1. 3).

5.4.2 Estimation of Instantaneous Components

The earth's angular velocity is small compared with gyro quantization, in contrast to
gravity and accelerometer quantization. Hence, it is reasonable to estimate the average
angular velocity and instantaneous gravity. In Section 5.3.3 we concluded that the
posterior-mean estimate of the instantaneous gravity components is best, based on a
Monte Carlo simulation. On the other hand, based on the same simulation, there is no
advantage in using a posterior-mean estimate of earth rate as opposed to a simple
average (see Section 5.4. 3).

5.4.3 Discussion

Several alignment estimation techniques are suggested. A Monte Carlo simulation was
performed to select the best estimation technique. The simulation is discussed in
Section 5 of the trade-off document. Two techniques were considered — simple average
(5.4. 1. 1) and posterior mean (5.4.1,3). Several values of K, At, and TEB were tried.
The effect of nongaussian noise was also investigated. The simple average was superior
to the posterior mean, An alternate technique is to use an instantaneous estimate of

g (5.3.2) and an average estimate of cgE. The accuracy will be improved but at the price
of a significant increase in the computation requirements. Therefore, the recommended
technique is simple average of both accelerometer and gyro data.
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The simulation is also used to investigate the characteristics of the recommended
techniques. The accuracy of gyrocompass alignment is strongly dependent on quantization
errors of the gyro. The alignment error is of the order of 100 seconds of arc,

5.5 CALCULATION OF ALIGNMENT MATRICES FROM ESTIMATES OF GRAVITY,
EARTH RATE AND OPTICAL ANGLES

The final operation in alignment is the calculation of the alignment matrix (see Chart
5-1). The basic equations are developed in Section 2.3.3 and are repeated here for

completeness. The Mirror-Alignment matrix is presented in Chart 5-3, the Level-
Alignment matrix in Chart 5-4, and the Gyrocompass matrix in Chart 5-5.

5.6 RECOMMENDED ALIGNMENT TECHNIQUES

Referring back to Chart 5-1, we find that there are four basic types of equations:
alignment matrix, preprocessing, estimation, and estimation matrix equations. The
alighment matrix equations are presented in Charts 5-3, 5-4, and 5-5 for Mirror
Alignment, Level Alignment, and Gyrocompass. The alignment matrix computations
are the only computations needed for Mirror Alignment. The preprocessing equations

’---—--+‘---'-

for level alignment and gyrocompass are presented in Chart 5-2 of Section 5.1, Note
that the dots on the left indicate which equations are used for Level Alignment and
Gyrocompass.

The estimation equations for Level Alignment are presented in Chart 5-6. The estima-
tion matrix equations are presented in Charts 5-7 and 5-8. The estimation equations
and matrix equations for Gyrocompass Alignment are presented in Chart 5-9.

The procedures required to implement the preceding alignment techniques are presented

in the Procedures Manual, Part 3. The estimation equations were programmed for the
Monte Carlo simulation, which is described in Section 5 of the trade-off document,
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CHART 5-3

MIRROR ALIGNMENT MATRIX

Inputs 61, oy 92 and Q%

where

YEMﬂ
(E-My)

(N'M,)

—

] B

(U'Ml)
(E-M,)
(N-M,)

.

—

From these quantities the alignment matrix is given by:

(M; x U)- (M, x My)

M, x M|
(B—/Il X E)‘(Ml X 1\_42)

IM; x M, |
(M, % N)* (M, x My)

My x Myl = (1 - (- Mp)21/2

cos 61
cos Ol1 sin 91

sinOt1 sine1

b

IMlxle

-

r i
(U-My)
(E' Mz)

(N*M,)

|

ﬂ
(E x N)-(M, X M,)

1M, x M, |
(NxU)-(M; xM,)

1My x M, |
(U x B)- (M x My)

M, x M, |

cos 62

cos 012 sin 62

sin 062 sin BZJ

An optional technique might utilize the value of II\LI1 X le from a previous alignment
thus eliminating the aforementioned dot product and square root operations.
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. g = [(g B)? + @& By)? + (g- By?1/2

¢ (Ml' U =(U- B))
e IM;xUl=(1-(M;-U
o (UB)-(@B)e

2]1/2

An optional technique might utilize any of the following additional inputs:

CHART 5-4
LEVEL ALIGNMENT MATRIX
Inputs (g- B;), (g By), (g Bs) and o
From these quantities the alignment matrix is given by:
1 0 0 0 1 1 0 0 |
- : Y. A . .
T 0 sina; cosa; 0 0 |m (U-By) (U-By) (U-By)
1 (Ml U)
L0 -Ccos al sinot1 |M1XU| |M1xU| 0 -(9.123) ((_j_.]_gz)
J 4 L=t - L .

® The zenith angle (61) of mirror one might be utilized to find (I\_/I1 - U) from

(M;-U) = cos 6,

® The magnitude of gravity (g) might be supplied from a local survey. This piece
of information can be utilized to reduce the number of required accelerometers

to two.
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CHART5-5
GYROCOMPASS MATRIX
E K E
Inputs (g- By), (g By), (g By) (w ™ By) (w™ By) and («™- By)
From these quantities the alignment matrix is given by:
r~ -1 ' - — oy
0 1 0 (W-B)) (W-By) (W-By)
1
T |= 0 0 W x Ul (Q‘EI) (9'122) (9‘12_3)
1 (W-U) '
wxul ~Twxul O (W x U)+(By x Bg) (WxU)-(BgxB,) (Wx U).(B,xB,)
- - . = - - - -4 L -
where

* (WeU) =(W.B))(U-B))+ (W+B,)(U-B,) + (WoBy)(U- By)
lwxul =(1- w.u)211/2
W-B) = (¢ B/

|

¢ U-B,) = (g-_lék)/ g R

F = (5 1§1)2 - (WF- 1}2)2 ¢ (oE. 123)2]1/2

. = [(g-B)? + (g-By? + (g- By)?1Y/2
An optional technique might utilize any of the following additional inputs:

® The local latitude (A\) might be utilized to find (W+U) from
(W-U) = cos A
® The magnitude .of gravity (g) might be supplied from a local survey.

®  The magnitude of earth rate (wE) might be supplied from a local survey.

A use of all additional inputs could reduce the number of necessary instruments to three
(either two accelerometers and one gyro, or one accelerometer and two gyros).
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CHAKRT 5-6

ESTIMATION ROUTINE COMPUTATIONS - LEVEL

Inputs: Preprocessed accelerometer measurements, X, estimation matrix, M,
and vector, b

7\
Output: Estimate of acceleration components in body frame, g=l_3i , 1i=1, 2, 3

at time t*

The basic estimation computation is

A\
g+ B, (%)
N\
g€ By(t)| = MX + b
N\
g- By (t¥)
where
T [ At 24t Kat at
X = 1] 3~B1dt, J a-Bgdt,:-- | a-B,dt,| a-Bydt,---,
|_0 At (K-1) At 0 B
KAt Kat
a-Bodt, -+ a-Bgdt
(K-1) ot (K-1)at
At = Intersample time
K = Number of samples

¢ DPosterior Mean Technique (Instantaneous): Computations of b and M from
the Estimation Matrix Computation Chart

L] Simple Average Technique:

b0
Kat) L. kat)! 0
M = (Kat)" L. (kat)!
L 0 (KAt)'l--'(KAt)'IJ
. N r— N
K K K
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CHART 5-17

ESTIMATION MATRIX COMPUTATIONS — LEVEL

Inputs: intersample time, At (sec)
number of samples, K
estimate of gravity, g (ft/ sec2)
rms error in gravity estimate O £t/ sec2)

TEB, §

estimate of
rms angular error in prior estimate of vertical, g (radians)
noise covariance functions (tabular)

* accelerometer noise ¢ (t) (ft2/ sec4)

® translational acceleration noise 9 ,(t) (ft2 /se ct

)
® rotational noise ?(t) (radianz)
prediction time Gt (sec)

Outputs: alignment parameters M and b

The intermediate quantities Ea’ Zn, E/*e&’ Co» c]. and Eg are computed from the
inputs.

* I, is Kx K matrix with components

At
(za)i]. = IO (At - ulg, (u+(j-i)At)du
J’O [At + ulg _(u + (j-i)At)d
t -i u

+ At +uif (u+()-1

] Z?n is K X K matrix with components

At
02 = [ [At- ul? (u + (j-1)At)du
0

n) ij

0
+[ [At+ul ¢ (u+(j-)At)du
-At
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CONTINUATION OF CHART 5-7

. Z)MS is 2 K x K matrix with components
At o
(Easa)ij = g [At - u] ®e(u+ (j-i) At) du
0
+ ‘]’ (At + u? ¢e(u+ (j-1) At) du
- At
o CO = ¢0 (0)
At _ _
* ¢ = j‘ ¢e(u+ (]-I)At-KAt-Et)du i=1, 2, ---, K

0
where the integrals are evaluated by a convenient integration technique such as
trapezoidal rule or Simpson's rule,

[ Eg isa 3 x 3 matrix

5 _
0

~ e 2 2 ~T

Lg = Ty g0y T,

LO ézo

@ D

From these intermediate quantities, ZN. EZ, V, A, B, ay, and a, are computed.

° EN is a 3K x 3K matrix

T +Z 0
n o
ZN = En+ZJa
0 2n+2a
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CONTINUATION OF CHART 5-17

T,isa (5K + 5) x (5K + 5) matrix

Z)-| | 0 i 3
b

-
T—ENL 7 3K

.—.—i_ T— _——— — v — = —— —
NG Sl N !
| |C.1\ [

22 = | |:|I E¢¢ | K

[ S
| 1 |c0‘|'c_1--ocK 1
| b T T

0, Il 1oz, K

| [c'l v

Lo K -

3 3K1 K 1 K

Numbers at edges of matrices denote dimension of submatrices.

----l-+

Matrices A (3 x 3) and B (3 x 3K) are submatrices

A B
T\-1
= vz, vh
BT D—l Z

where matrix V is the (3K + 3) x (5K + 5) matrix given on the following chart.

Atg(Tyyy [
L |
. o~ ] Atg(Tl)ll \
g (Tyqy ALE (T
s EASS D31 (
a;p = | 8Ty ag = | . K
S F ) Ate(Tyyy \
L 1 31..4 Atg(T1)31 /
~ > K
Atg(T1)31 \
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CONTINUATION OF CHART 5-7

Then, the outputs are given by:

e M= -A"lB

1

Note that A™" is the covariance matrix of the estimate.

* b =a; +A By
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CHART 5-8
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CHART 5-9

ESTIMATION ROUTINE COMPUTATIONS — GYROCOMPASS

Inputs: Preprocessed accelerometer measurements, X, estimation matrix, M,
and vector, b

N
Outputs: E/sg%ates of gravity and earth rate components in body frame, g '131 and

GE.B, i=1,2 3

The basic estimation computation is

o

loQ
I
W

e
I
-

e
m

o

O

S

IE |
Ty

where

At Intersample time

A
0

Number of samples
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APPENDIX A
THE MATHEMATICAL MODEL OF THE
VIBRATING STRING ACCELEROMETER

A-1,0 INTRODUCTION

This appendix describes the operation of the Vibrating String Accelerometer (VSA) that
has been selected for the ERC Strapdown Inertial Guidance System and develops a
mathematical model to be used to relate the output of this type instrument to an estimate
of applied acceleration.

A-2.0 DESCRIPTION OF THE ACCELEROMETER'S OPERATION

A functional block diagram of the Vibrating String Accelerometer (VSA) is shown in

Figure A-1., The accelerometer consists of a seismic mass (mass 1 and mass 2 separated =

by a spring) which is supported by: 1) two taut strings that function as oscillator "tank"
circuits, and 2) ligaments as shown in Figure A-1and normal to the plane of Figure A-1,

When the VSA is at rest or moving with constant velocity, the sum of forces acting on its
seismic mass is zero. When the VSA is accelerated, the resultant force acting on the
seismic mass changes so that it accelerates with the case. The displacement of the
seismic mass, relative to the case, that is produced by this resultant force is negligible
except along the sensitive axis, A, as shown in Figure A-1, The tension in the strings as
a result will not be affected by any motion other than that along the sensitive axis. This
change in tension (from the at rest tension) of each string is, therefore, a function of the
acceleration acting along the A axis of the instrument.

Since the natural frequency of a vibrating string is a function of its tension, the vibrating
frequencies of the strings in the accelerometer are directly related to the applied accel-
eration along A.

Each of the strings of the VSA passes through a magnetic field supplied by the two permanent
magnets of Figure A-1. When set to vibrating in its field, an electric signal is generated

by the string. This signal is amplified and fed back to the string in such a manner that a
sustained vibration occurs. The electric signals so generated are nominally sinusoidal

with frequency equal to the resonant frequency of the individual string. The vibrating string
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Figure A-1. A Schematic Diagram of the Accelerometer
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acts as a high Q tank cricuit for the oscillator within the associated feedback amplifier
electronics. The vibrating frequency of each string is read by using Schmidt triggers to
generate pulses corresponding to zero crossings of the respective sine waves., The
frequency of the zero crossing pulse train is proportional to the frequency of the vibrating
string.

A-3,0 KINETICS OF VSA

A-3.1 COORDINATE AXES

The accelerometer coordinate axes (A, O, P) used in the derivation of the fundamental
mathematical model are illustrated in Figure A-2. The unit vector A is along the nominal
position of the string, while O and P are unit vectors arbitrarily defined to make A, O,
and P a right handed, orthogonal system.

A-3.2 THE TENSION IN THE STRING

The forces acting on My and M, along A are shown in Figure A-3. The lateral supportmg
forces along P (normal to the page) are not shown in this figure. . ’”

The equations of motion for the two masses can be written

- - . A 5 (A -

As we are interested in the tension of the strings, only the A component of equation A-1
will be considered.

(A-2)

Because the supporting force from the ligaments acts orthogonally to the string, we have

(Fq-4) = T3-Ty
(4-3)

[\M]

1>
Il
=

oo
3
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Therefore from equations A-2 and A-3, we have

T3-Ty = My(a-A)
TyTg = My(a- A)
which can be combined as
Ty-T; = (Ty-Tg)+(T5-Ty) = (Mq + My)(a-A) (A-4)

When the accelerometer is stationary a = 0 and equation A-4 gives Tz = Tl' Let this tension
in the strings be defined as T o+ When the VSA experiences an acceleration a, T 1 and Ty
will be changed to cause the seismic masses to accelerate with the case. If (a-A) is
positive (T, -Tl) will also be positive. The tension in each of the strings can be written as

T2 = TO + ATZ
(A-5)

T1 = T0+AT1
and
AT + AT, =(M; +M,)(a+ A)

The amount of change in the tension of both strings will be the same if the strings are
identical, In practice, however, the strings cannot be made to be identical.

For the range of accelerations that is within the proportional limit of the strings, we can
write

AT =Kya-4a)

(A-6)
ATy =Ky(a- A)
where K1+K2=M1+M2
A-5



Beyond that range of applied acceleration, the strings creep and the mathematical model

derived in the following pages will not apply,

A-4.0 MODEL DEVELOPMENT

A-4,1 THE RESONANT FREQUENCY OF A VIBRATING STRING

The resonant frequency of a uniform string under tension is directly proportional to the

square root of the tension,

For the vibrating strings S1 and Sz, their pulse train frequencies fl and f2 (which are pro-

portional to the respective resonant frequencies) can be written as

(A-T)

he-dimensions, density and ot}

physical properties of the strings. Combining equations A-5, A-6 and A-7, we have

= Cl\/ T, -K;(@-A)

—
|

£ =0T LK. (aeA)
2 2V o0 T2\l

By Taylor's expansion, this becomes

1
K2 (E‘A_)Z

f C - K,(a-A)
= T - a- -
1 -1 ﬂ WT, 1- T sryfT !

1 5
e’ - et
1‘6T0 To 128T0 T0
A-~6
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1 1
_ —_— 2 0 A2
fp = 02[4T0+2 —=Kp(@-4) - ———K(a-4)
0 oV¥'o

5

1
g 1«:5’(3._1;_)53 S Kg(i.é)zl“.:,
16T01/T0 128T0 T,
The above expansions will converge rapidly since the instrument is constructed so that T o
is much greater than either K1(§~ A) and Kz(g._- A). The frequency difference of the
two strings is

¢ _ - —1 2 2 2
g -f1 = (Cq-CpyT, + (CaKy +C1Ky)(a-A) - (CoKy - CiKY)(a-A)
2 1/TO 8T01/T0

(CoK5 + C1KDa-4)° - —:——(czxg - CKD@ At (a-8)

1
2
o 1eTA T, —wsTo o L

The series given in equation A-8 converges rapidly because T o is made large. However,
Cy C2, K4 and K, are constants determined by the dimension and material of the vibrating
strings S and S9. The accelerometer is manufactured so that (Cl-Cz) and (K1'K2) are
kept as small as possible (2 highly symmetric instrument). For this reason, the even
order terms are very small and the linear term is the most significant, The approximated
frequency difference obtained by truncating equation A-8 after the third degree terms may
be written:

2
fpf) =D Dy + Dya-A) + DDy (a+ A)* + DDy(a- A)° (A-9)

where, by definition,

]
1

2

o .
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A-4,2 THE ACCELEROMETER READOUT

Let the signal generated by the string S be

3t -
e t) = sinl 8+ jto nf dt ]

where f is the frequency of the pulse train from string S (in pulses per second) and 6
is a constant. The number of zero crossings in the interval (ta, tb) is

t, -At tp
N, =[P 2 fat=Eq o+ [ tpat
T, +At t
where (ta + Atl) and (tb - Oty) are the times of the first and last zero crossings in the
interval (t,, t,) and Eq ; is the quantization error given by

The time increments Atl and At2 are defined by illustration in Figure A-4, In the same
way, for string Sz, we have

Y%
N, = Eq, +ft fodt
a
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The difference in the number of zero crossings of the two strings can be written, using
equation A-9, as

'
(Eqq - qu) + I (fz - fl)dt

ta

NZ—NI

ty Y
Eq+ [ DDydt + | Dy(a-A)dt
a ta

1}

o th
+ [ "DDy(a-a)dt+ [ DDy(a-a)at
ta ta

A-4,3 THE VSA FUNDAMENTAL MATHEMATICAL MODEL

_In summary, the readout of the VSA is two pulse trains corresponding to the zero crossings

|

of the sinusoidal signals from the two vibrating strings. The input to the VSA is the
acceleration of the case along its sensitive axis. The accelerometer readout is related
to its input by the mathematical model given in Chart A-1,

A-10
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CHART A-

1

THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

£ b, ty

[ f,dt- [ fidt = (N,-N.)+ Eq =D, [ (a-A)dt

¢ 2 ¢ 1 271 14, &5

a a a
t
b 2 3

+ Dy }It [D+Dy(a-A)“+ Dg(a-A)°lat

a

I

WHERE:

® a is the acceleration applied to the accelerometer
° ta <t< tb is the time interval over which a is measured
¢ A is a unit vector directed along the input axis of the accelerometer

. N1 and N2 are the number of zero crossings detected in ta ststb

1 WMWW - T T I —

® Eq is the instrument quantization error due to the fact that ta and tb
do not correspond to zero crossings

L D1 is the accelerometer scale factor
] D0 is the accelerometer bias
. D2 is the second order coefficient

° D3 is the third order coefficient

L f2 and fl are string frequencies in pulses/second

A-11
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APPENDIX B
THE MATHEMAT ICAL MODEL OF THE GYROSCOPE

B-1.0 INTRODUCTION

The purpose of this appendix is to find the mathematical expression that relates the outputs
of the Honeywell GG 334A gyroscope to the environmental input to which this gyro is
subjected.

Section B-2.0 is devoted to the general description of the 334A gyro and its principle of
operation. The mathematical model is then developed in Section B-3.0.

B-2.0 DESCRIPTION OF THE GYRO OPERATION

The Honeywell GG 334A gyro contains a gimballed rotor spinning at a very high angular

i =1 ic gas bearing is used to support the rotor, The
gimbal is restricted by the gimbal bearing to rotate only about the output axis relative to
the case. The signal generator of Figure B-1 consists of a moving coil attached to the
gimbal and a stationary wound stator attached to the gyro case. It generates ana-c voltage
with an amplitude that is directly proportional to the angular displacement of the moving
coil from its null position, In this way the gimbal deflection relative to the case is
measured., At each sampling cycle (2,6 KHz rate), the gimbal deflection is detected,
sampled and compared to two thresholds (positive and negative of equal level) to determine
if a positive, zero or negative rebalance torque is to be generated. A current switch and
associated electronics provide the torque generator with correct torquing current pulses
of constant strength. The timing information (3.6 KHz) used to derive the cycle periods
is furnished.

Any angular motion of the gyro case about the input axis, G, will generate a gyroscopic
torque that tends to rotate the gimbal about the output axis, O. The signal generator
senses the resulting gimbal deflection and produces the signal to the gyro electronics
necessary to generate the correct torquing current pulses to the torque generator, In
this way, the gyroscopic torque developed initially about the gimbal axis is rebalanced by
the pulsive torque produced by the torque generator. The average rebalance torque is
proportional to the average gyroscopic torque which is in turn proportional to the gyro

angular rate about G. A readout of the pulse train of the rebalance current is used as the
instrument's output.
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B-3.0 MATH MODEL DEVELOPMENT

B-3.1 COORDINATE AXES

The coordinate system used in the following derivations is illustrated in Figure B-2. The
gimbal axes (G, O, S) are defined as fixed to the gyro gimbal with O (the output axis)
directed along the gimbal rotary axis, S (the spin axis) directed along the gyro rotor spin
axis and G (the input axis) directed along the direction of O x 8.

The set (G, O, S) is right handed, orthogonal and is assumed to be coincident with the
gimbal principal axes.

B-3.2 THE GIMBAL DYNAMICS

The gimbal angular momentum can be expressed in the gimbal coordinate axes as

H=lga(w8 - GG +lgn(wf - 00 +Igw -5 +H IS (B-1)

where IGG is the moment of inertia of the gimbal and the rotor about G, IOO is the
moment of inertia of the gimbal and the rotor about O, ISS is the moment of inertia of
the gimbal about S, and H,. is the constant rotor spinning angular momentum. (c_«-‘g :G),
('_u.‘g -O), and (&;g +S) are the components of the gimbal angular velocity about G, O, and

Since G, O, S are assumed to be the principal axes of the gimbal, all the products of
inertias IGO’ IOS’ IGS’ etc. are assumed to be zero, The second law of rotational motion
states that the torque applied to the gimbal is equal to the derivative of the gimbal angular
momentum.

dH
T = —= (3-2)
- dt

Using equation B-1 and writing equation B-2 in component form, we have

(T°G) = IGC,(‘:_J g.g) + (,‘fg‘_(_)_) (jfg'_s_)(lss-loo) + Hr(_u_:g.g) (B-3)
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(B-3)
(T:8) = Igg(@55) + (w8 G) (w8 0) (15-Igg)

(T-G) and (’}‘_- §) are reaction torques from the gimbal bearing. Since we are concerned
only with the torque about the output axis, 0, we may write

. g \
Ty = (T:0) =Igg& +Q) -H(wE.G) + (8. 8)(w8-G) (15 -Igg)

For a single -degree-of-freedom gyro, the gimbal can only move relative to the case about
the gimbal axis O. Thus the gimbal angular velocity can be expressed in terms of the case
angular velocity and the relative angular velocity between the gimbal and the case.

—w+(_a3g-w)=£+e.9_

where w is the gyro case angular velocity and 6 is the gimbal deflection with respect to
~ the case (see Figure B-3). Therefore, T

T = (T-0) = Ioo.e. + Ioo(‘_.”_ . Q_) - Hr(‘j“ 9) + (_Uj '§) (_‘9 * Q_) (IGG-ISS) (B-4)

B-3.3 THE GIMBAL TORQUE

The gimbal torque, To’ is the sum of all torques applied to the gimbal about the output
axis, O. T, includes a dampening torque, T 4 @ rebalance torque, T,., provided by the
torque generator; and error torques.

The dampening torque is proportional to the rate of change of gimbal deflection angle,é .

Td= -Ce

The rebalance torque is

Tr = -Lék

where bk is the logic value of the pulse at the instant tye. b = +1, -1, or 0 for positive,
negative or zero pulses, respectively.

-----#--
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Figure B-3. The Gimbal Deflection
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T

L = L,'U(t-t)-U(t-t -h):

where L0 is the amplituce of the pulse
h is the pulse width
U(t) is the unit step function

tk is the kth sampling period.

L h= j'tk+1 Ldt is the strength of the pulse and would be constant for a linear rebalance
tk

loop. However, the torque rebalance loop will not be linear in reality, and L Oh will be a

function of w. To take into account the effect of nonlinearity, let us assume

Lh = Loh(l+a(w-Gy)

where L 0h is constant and o very small,

,an a-sensitive torque, an gz-sensitive torque,

and other torques considered as noise (for example, reaction torque from the signal
generator),

The constant torque is denoted by R',

The a-sensitive torques are mainly due to the fact that the center of support of the gimbal
is not coincident with its center of mass. If the gyro acceleration is a, the a -sensitive
error torque is

T; =Bj(a:G) + B(2:0) + Bg(a-S)

where B!

I are gyro unbalance coefficients,

, B'o and Bé
The gz-sensitive error torque is due to the fact that the gyro gimbal is not a rigid body.
To make the gimbal follow the motion of the gyro case, there are forces acting on the
gimbal through the gimbal bearing. The gimbal deforms when subjected to these forces.
Because of this deformation, the center of mass of the gimbal will be displaced from the
center of support and therefore produce an gz—sensitive torque about the output axis. It
is assumed that the deformations also occur in the lateral direction as well as along the
direction of the acceleration.
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If the acceleration is a, the gz—sensitive error torque is
Ty = Cip(@- @) + Cglas)® + Cig(a-G)(a+) + Cpg(a-V) (@-8) + Cffa-G)(a-0)
where C'n, C'SS s C’IS , CbS , and CiO are so-called compliance coefficients.
The total gimbal torque is then
T, = -Cé -L6, +R' + Bj(a-G)+Ba- 0)+Bg (a-8)+Cry(a- g)2+CéS(g‘§)2+ Cig(a‘G)(a's)

+ Cpg(a-0)(a-8) +C{,(a-G)(a-0) + T, (B-5)

where Tn is the torque due to other effects and is considered as a noise component.

B-3.4 CONCLUSION

Combining equation B-4 and equation B-5 we have
o ] 2
-C6 -L 5k+R'+Bi (a-G) + B(') (a Q)+Bé (?:'§.)+CH(§.' g)2+Cés (a-8) +CI'S (a.G)(a-S)

+C! . ! . . = !’.- } - welr wWeSHW (3 o~ =T
Cg(2- Oar $)4CYo (3 G)ar 01T, = To o O) - H (e Goluse S + NI T )

where 6 is the gyro case angular velocity, and the component of the reaction torque,
IOO » has been neglected since it is small compared with the damping torque, (of:

A rearrangement of equation B-6 gives

L - e s LR B{@-0) +BY@ O - By(@-9) + Cpyla-G)?
H, © T T H,

+Cggla- 57 + Cis(a-G)(@-8) + Chg(a-O)a-8) + Cjy(a-G)a-0)

T, C¢
B (IGG - ISS)(.“i°§)(“i'9) - 100(4‘39):' +H— - ? (B-7)
r r



Let us now integrate equation B-7 over the N sampling periods starting at time t o and

ending at time t . We have

L h
o n tn tn
(Z 6,) = F (weG)dt + | [R+BI(a°G)+Bo(a-0)+BS(a-S)
H, k-1 - - - -7
r to tO

+Cp(a-G)* + Cgg(a-8)% + Crga-G)(a-8) + Coga-0)a-s)

+Cpo(@-G)(ar0) + Qg (w-G)(w-8) + I (& ._o_ﬂdt +An+Eq  (B-8)

where « is the gyro case angular velocity

ék = 1,0,-1 is the kth rebalance pulse

R! B]': Bb Bé
R, By, Bg, Bg, Cqp, Cgg: Cis:s COS’ and Cy4 equal _H-; , H—r, ;I_r-, g,
!
kS S5 S5 %o o
—, s s , and —— , respectively
H, dd, Hy, H, Hy.
g - Isg)
Qs -
r
Ioo
J=—
H,
tn Th
An = ; —— dt is the effect of noise torques
to Hp
h €,
Eq =) — 6dt is a quantization error,
to Hy



However,
L,h = L hl1+0(»-G)

With @ very small, we can write

—_— 1

h = ——— L,h ~ (1-a@-G)L,h

o 1+oc(¢_1,_‘-9_) 0

Multiplying both sides of equation B-8 by (1 - @(w -G)) produces the gyro model as given
on Chart B-1.

L h L h
o o
In the model, A% = — is the instrument scale factor, QII = -a — is the coefficient
H H
r r

of the term of the scale factor nonlinearity., & is very small, and the higher order effects
of it have been ignored.
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CiART B-1

THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS:

2
se | T
k=1 K

_ t
_J't

N(w.G)dt + j’tN R+B,(a'G) + Bn(a-0) + Bo(a-$) + C;(a-G)2 + C -(a-S)Z
== tO IS = o< = Se= == Ss==

+ Ciga-G) @:8) + Cpgla-0) @8) + Cpa-G) @-0)

d
+ Qpl & 9)2 + Qg(wG) (w8) + I 3 (wr Qﬂdt + &n + Eq

- WHERE

« is the angular velocity applied to the gyro
a is the acceleration applied to the gyro
t0 <ts tN is the time interval over which a and « are measured

tN - tO = Nr, where N is an integer, andT is the gyro sampling
period

Sisa unit vector aiong the spin axis of the rotor

O is a unit vector directed along the output axis as defined by the
gimbal

G is a unit vector along O x S (that is, the sensitive axis of the gyro)

bk is the kth gyro pulse, equal to +1, -1, or O for positive, negative,
or no pulse

Ad is the gyro scale factor

R is the gyro bias

BI BO and Bs are the gyro unbalance coefficients

CII CSS CIS COS and CIO are the gyro compliance coefficients

QIS and QII are dynamic coupling coefficients due to gimbal deflection
and scale factor nonlinearity, respectively

J is the angular rate coefficient

An is the effect of gyro noise over the Cto, ty interval

Eq is the gyro quantization error

B-11
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APPENDIX C
ALTERNATE FORM OF G MATRICES

In Section 2.2.4 the QG and QA matrices were expressed in terms of (QA)‘1 and
(QG)'I, which are the matrices calibrated in the ERC laboratory. The calibrated elements
were seen in Section 2.2. 4 to have either the form A, -B, or G, -B, . Because the body
axes (_B_k) are defined, the elements do not equate directly to physical ISU angles — angles
like the angle between, say, two gyro axes. It is possible, however, to express the Q
matrices as a function of physical angles only. Those expressions are found in Chart C-1
and C-2, In Chart C-1 we see the general expression, and in Chart C-2 we see the first
order approximation of the matrices. (Recall that the nominal QG and QA matrices are

identity matrices.)

The form of the two matrices (QA and QG) in Chart C-1 and C-2 are, naturally, the same.
In Chart C-1 the Q matrices have been separated into sums and products of submatrices,
where each submatrix is a function of only one type of ISU angle. For example, the first

submatrix is a function of only the angle between the mirrors; the second submatrix is a
function of only the angles between the mirrors and instruments; the third submatrix is a
function of only the angles between the accelerometers or gyros, and so forth,

The calibrated QA and QCT elements can be equated to the elements found in Chart C-2,
allowing for the solution of the physical ISU angles. Such solutions could be usetul tor
the determination of the satisfaction of design requirements.



CHART C-1

Q MATRICES
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CHART C-2

:

Q MATRICES (OPERATIONAL)

LET
N _ N _ N
A —Ml_gl
N_LN _ N
4 =My =G

I}_'II: be perpendicular to l\ilgJ

where the superscript N denotes
the nominal vector

IGNORING SECOND ORDER TERMS, WE HAVE:

1 (My-Ag- ArAg) (M -Ag-Ag-A))
A = .
Q| = | (MyrA - MyMy - 4504y ! (My-A3- Ay Ay)
(M4, ~(My-Ag) 1
Or, letting éz°(M1‘ ‘51) = Mz-(Ml— él)
and él'(MZ- éz) = 1.\_41'(1\_/[2' éz)
1 M,-M, - My-4,) @1"23 - é3'é1)7
= -Mpay) ! (My+Ag - Ay 43)
(Mg 43) -(My-Ag) 1
- -
B YT e N LY. el ~ e
r 1 Sy Sy MGy - CyGy
G| _
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Or, letting 92'(1\—41' gl) = 1\_/[2-(1\_41- (_}_1)
and Gy (Mp-Gy) = My+(My- Gy)
! (M"My - MyGy)  (My°Gg - G3Gy)
= | "MyGy) ! (M- Gy - G+ Gy)
-(M;°Gy) -(My-Gg) 1
C-3



APPENDIX D
COMPUTER SYSTEM DESCRIPTION

This appendix contains a description of the laboratory computer and its associated equip-
ment. Section 1 describes the laboratory computer. Section 2 describes the Interface
Electronics Unit (IEU), the device that interfaces the computer to the ISU. Section 3
describes briefly the devices used for the computer manual interface.

D-1.0 COMPUTER

The Honeywell DDP-124 computer is a small scale scientific/control digital computer
with a 1.75 microsecond memory access time. The memory is an 8, 192 word, 24-bit/
word core memory. Arithmetic is performed on 24-bit sign-magnitude (not complement)
data with the left-most bit of the data word containing the sign and the other 23 bits con-
taining a binary representation of the magnitude. The basic arithmetic register is a 24-

shifting.

The instruction repertoire contains 47 instructions allowing fairly flexible fixed point
processing. Unique instructions include a step multiple precision, store address portion
of A, output and input to A (may be ANDs) as well as input/output to memory, direct con-
trol pulse outputs and sense line skips. Because of the sign magnitude number representa-
tion, the computer has both arithmetic shifts (sign bit(s) do not shift) and logical shifts.

Indirect addressing may be performed by use of one bit in the instruction. Three index
registers are available.

A Fortran IV Compiler is available and is considered preferable by NASA for calibration
programming. The 124 is not equipped with floating point hardware so use of the Fortran
Compiler will necessitate use of time consuming floating point software routines. Because
of real-time considerations, Fortran shall not be used for alignment.

The computer interfaces with the Interface Electronics Unit, the displays and magnetic tape
unit via a direct memory access (DMA) subunit. This allows direct transfer of data from
and to memory under buffer control in one of two modes. These modes are the time sharing
mode and the hog mode. In the hog mode, the input/output will hold the memory until the
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entire transfer is completed. In the time sharing mode the input/output and the processor share
mer:ory with either locked out for one memory cycle while the other completes one transfer.

Execution times of instructions are as given in the LPP-124 Programmers Reference Manual,
and execution times and memory sizing for standard arithmetic subroutines are as given in
the DDP-124 Users Guide. One magnetic tape handler is available for program storage
and/or other uses.

D-2.0 INTERFACE ELECTRONIC UNIT (IEU)

The IEU provides the computer an interface to the system equipment. A block diagram of
the IEU is shown in Figure D-1,

The IEU counts information in its counters frou. tne gyros, the accelerometer strings and
the timer. Each counter is compared to a manually selected interrupt condition. This
condition is selected as any number for the time counters or any power of two for gyro
and accelerometer inputs. When an interrupt condition is met, a signal is sent to inter-
rupt logic 3 if time counter 2 has satisfied it condition, interrupt logic 2 if time counter

) ,,] ] £ E- ’ it 15t i ¢ . AI‘Ifﬁ or 1 t . ist m,, [N

satisfied its condition. The interrupt logic generates an interrupt to the computer on its
own interrupt channel and sends a reset signal to the counters. Interrupt logic 1 and 2
send reset signals to all of the counters other than time counter 2 and interrupt logic 3
sends a reset signal only to time counter 2. When a counter receives a reset signal, it
will hold the contents of the main register, clear an auxiliary register and begin to ac-
cumulate data in the auxiliary register.

When the computer has received an interrupt, it will initiate a direct memory access
(DMA) controlled input from the IEU of the counters and ISU status registers. The main
registers of the counters are read. After the reading process has been completed, a
resume signal will be sent to all the counters from the DMA input control. This signal
will cause any counter that is counting in an auxiliary register to clear the main register,
add the auxiliary register to the main register. and continue accumulating in the main
register.

While the IEU has the capability of using any of the inputs to determine sampling rate as
described above, it is not expected that any criterion other than time counter i is needed
for the main calibration and alignment routines. The IEU interface program should verify

that the time criterion

At il varasT A

has been met (Interrupt
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Figure D-1, IEU Block Diagram
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Since the IEU sampling determines the time to sample ISU data on the basis of a time
criterion, use of the IEU results in the maximum worst-case quantization error.

The IEU will transfer up to four 24-bit parallel data words from (and to) the ISU to (and
from) the computer. Output from the computer is via DMA transfer.

D-3.0 COMPUTER MANUAL INTERFACE DEVICES

The operator interfaces with the computer via the display panel, a keyboard and typewriter
and a paper tape reader and punch.

The display panel can display nine numbers. Each number has a signed one decimal digit
mantissa and a signed five decimal digit characteristic. This capability will be used to
display results or intermediate results or request and to display normalized data output
from the ISU during real-time data collection by the computer.

The display panel has three rows of eight buttons each to be used to select parameters to
be displayed and 24 buttons to select program options.

The keyboard and typewriter may be used to enter data into the computer in small amounts
and to furnish the operator with information such as desired settings of test table axes.
Maximum transfer rate is 15. 5 characters per second.

The paper tape reader and punch will be used to enter large amounis of data into the com-
puter and for output of the results of the procedure. Maximum transfer rates are 110
6-bit characters per second for the reader and 300 6-bit characters per second for the

punch.



