4,661 research outputs found

    A new dry biomedical electrode

    Get PDF
    Electronic circuitry contains new operational amplifier which incorporates monolithic super-gain transistors. Electrode does not provide voltage amplification; instead, it acts as current amplifier to make it possible to pick up electrical potentials from surface of highly resistant dry skin

    An investigation of the reduction of carbon dioxide in a silent electric discharge

    Get PDF
    The reduction of CO2 to O2 and CO in a silent electric discharge was studied. It was found that current alone (in the ionized plasma induced by the silent electric discharge) was reponsible for the CO2 reduction process. Voltage and frequency were important only in so far as they induced current in the plasma. Pressure and temperature were of minimum influence in the process. The large power consumption in the process was recognized as resulting from the low power factor of the reactor vessel which electrically behaved like a capacitor. The power factor was subsequently improved by adding an inductive element to make the reactor vessel capacitance part of a resonant circuit. It was found that the CO2 reduction process was most efficient in terms of power vs reduction rate when a voltage was employed that was only slightly higher than that needed to induce the plasma

    Gravity-assisted trajectories for unmanned space exploration

    Get PDF
    Gravity assistance to modify heliocentric trajectories of manned space probe

    Degradation and reuse of radiative thermal protection system materials for the space shuttle

    Get PDF
    Three silicide coated columbium alloys and two cobalt alloys were subjected to identical simulated reentry profiling exposures in both static (controlled vacuum leak) and dynamic (hypersonic plasma shear) environments. Primary emphasis in the columbium alloy evaluation was on the Cb752 and C129Y alloys with a lesser amount on FS85. Commercial silicide coatings of the R512E and VH109 formulations were used. The coated specimens were intentionally defected to provide the types of coating flaws that are expected in service. Temperatures were profiled up to peak temperatures of either 2350 F or 2500 F for 15 minutes in each cycle

    Book Reviews

    Get PDF

    Microminiaturized, biopotential conditioning system (MBCS)

    Get PDF
    Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material

    Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere

    Get PDF
    Many experimental studies have demonstrated that VHF Stratosphere-Troposphere (ST) radar echo power is proportional to the generalized refractive index gradient squared <I>M</I><sup>2</sup> when using a vertically oriented beam. Because humidity is generally negligible above the tropopause, VHF ST radars can thus provide information on the static stability (quantified by the squared Brunt-Väisälä frequency <I>N</I><sup>2</sup>) at stratospheric heights and this capability is useful for many scientific applications. Most studies have been performed until now at a vertical resolution of 150 m or more. In the present paper, results of comparisons between radar- and (balloon borne) radiosonde-derived <I>M</I><sup>2</sup> and <I>N</I><sup>2</sup> are shown at a better vertical resolution of 50 m with the MU radar (34.85° N, 136.15° E; Japan) by benefiting from the range resolution improvement provided by the multi-frequency range imaging technique, using the Capon processing method. Owing to favorable winds in the troposphere, the radiosondes did not drift horizontally more than about 30 km from the MU radar site by the time they reached an altitude of 20 km. The measurements were thus simultaneous and almost collocated. Very good agreements have been obtained between both high resolution profiles of <i>M</i><sup>2</sup>, as well as profiles of <i>N</i><sup>2</sup>. It is also shown that this agreement can still be improved by taking into account a frozen-in advection of the air parcels by a horizontally uniform wind. Therefore, it can be concluded that 1) the range imaging technique with the Capon method really provides substantial range resolution improvement, despite the relatively weak Signal-to-Noise Ratios (SNR) over the analyzed region of the lower stratosphere, 2) the proportionality of the radar echo power to <I>M</I><sup>2</sup> at a vertical scale down to 50 m in the lower stratosphere is experimentally demonstrated, 3) the MU radar can provide stability profiles with a vertical resolution of 50 m at heights where humidity is negligible, 4) stable stratospheric layers as thin as 50 m or less have at least a horizontal extent of a few km to several tens of kilometers and can be considered as frozenly advected over scales of a few tens of minutes

    Horizontal maps of echo power in the lower stratosphere using the MU radar

    No full text
    International audienceIn recent works, zenithal and azimuthal angle variations of echo power measured by VHF Stratosphere-Troposphere (ST) radars have been analyzed in detail using different radar multi-beam configurations. It was found that the azimuthal angle corresponding to maximum echo power is closely related to the direction of the horizontal wind shear. These properties indicate that local wind shear affects the tilt of the scatterers. Moreover, horizontal maps of echo power collected using a large set of beams steered pulse-to-pulse up to 40 degrees off zenith revealed that the power distribution pattern in the troposphere is often skewed. In this work, a three-dimensional description of echo power variations up to 24 degrees off zenith is shown for measurements in the lower stratosphere (i.e. up to approximately 20km) using a "sequential multi-beam" (SMB) configuration. Such a description was not possible above the tropopause with classical multi-beam configurations because of the loss of radar sensitivity due to the limited integration time by the use of a large number of beams. This work attempts to complete previous descriptions of the phenomenon by some observations in the lower stratosphere discussed in association with complementary balloon measurements. Key words. Meteorology and atmospheric dynamics (turbulence) – Radio Science (remote sensing

    High-resolution vertical imaging of the troposphere and lower stratosphere using the new MU radar system

    Get PDF
    International audienceIn the present paper, a new application of the range imaging technique called Frequency Interferometry Imaging (FII) or Range Imaging (RIM), performed in April 2005, is shown using the new 46.5-MHz Middle and Upper (MU) atmosphere radar system (Shigaraki, Japan). Height-time images of brightness distribution have been computed at the highest resolution ever obtained for imaging with VHF radars in the troposphere and, for the very first time, in the lower stratosphere, up to about 22 km. The images were produced by processing signals obtained with an initial range-resolution of ?r=150 m and five equally-spaced frequencies within ?f=1.0 MHz, with the adaptive Capon method. These values represent an improvement of a factor 2 over all the previous published experiments at VHF, which were performed with ?r=300 m and ?f=0.5 MHz. The Capon images present realistic and self-consistent features, and reveal many more organized structures than the height-time SNR plots at the initial range-resolution. For example, the Capon images show persistent enhanced brightness layers significantly thinner than 150 m in the stratosphere, which are impossible to track with the standard single-frequency mode owing to a lack of range resolution. These observations thus support the idea of strong stratification even at vertical scales much smaller than 100 m, as suggested by recent high-resolution temperature observations by balloons (Dalaudier et al., 1994). We also present comparisons of Capon images with patterns obtained from the dual-FDI technique and two parametric methods (the MUSIC algorithm and the newly-introduced Maximum Entropy Method based on an auto-regressive (AR) model). The comparisons confirm the insufficiencies of the dual-FDI technique and indicate that parametric methods such as MEM and the MUSIC algorithm can help to validate the Capon images when the parametric methods provide similar patterns
    • …
    corecore