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ABSTRACT 

The concept of u t i l i z ing  a close encounter with another planet t o  

modify the heliocentric t ra jec tor ies  of unmanned space probes has been 

examined. This study consisted of both a l i t e r a tu re  survey and original 

analyt ical  work. The potential advantages of swingbys of Venus and Jupi ter  

are i l l u s t r a t e d  for three classes  of missions: 

reaches of the solar  system, (2) probes to  the near v ic in i ty  or impact with 

(1) probes t o  the outer 

the Sun, and (3) probes out of the ec l ip t i c  plane. 



GRAVITY-ASSISTED TRAJETORIES FOR UNMANNED SPACE EXPLORATION 

bY 

B. F. Porter, R. G. Luce, and D. S. Edgecornbe 

1I"IRODUCTSON 

The objectives of the  study covered i n  t h i s  report  were t o  examine 

the ro l e  of gravity-assisted t ra jector ies  in unmanned space exploration, t o  

delineate the classes  of missions which may benefit  most s ignif icant ly  from 

planet swingby techniques, t o  indicate the e f fec t  of gravity-assisted tra- 

jec tor ies  upon launch-vehicle performance requirements, and t o  suggest 

avenues of further study, 

The concept of u t i l i z ing  a close planetary encounter for  the pur- 

pose of modifying the heliocentric o rb i t  of a spacecraft is not new, having 

been studied by Hohmann i n  1928 for an Earth-Mars-Venus-Mercury voyage. 

More recently, many researchers have investigated t h e  technique i n  varying 

degrees of d e t a i l  and many significant papers have appeared i n  the technical 

l i t e ra ture .  A bibliography of these papers is presented i n  Appendix A, 

Almost a i l  of the papers on t h i s  topic are cclzcerned with missions 

i n  the Mercury-Venus-Earth-Mars regime, with a swingby of one or more of 

these planets being u t i l i zed  t o  reduce the energy requirements for  probes t o  

other planets or  t o  the vicini ty  of  the Sun. 

well-known paper by Hunter (Reference 11, wherein swingby of Jupi ter  is 

suggested t o  reduce the launch-energy requirements for  the more strenuous 

missions needed for  solar system exploration, and the more recent work of 

Niehoff (Reference 2). I n  the l a t t e r  report ,  a quantitative treatment of 

Jupiter-assisted t ra jec tor ies  appears, although these t ra jec tor ies  a re  

r e s t r i c t e d  t o  the plane of the ecliptic.  

Notable exceptions are the  
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An examination of the work done on t h i s  subject reveals  t h a t  

Jupi te r  represents the most dramatic potent ia l  for unmanned probes. 

reason, a major portion of the present e f fo r t  is devoted t o  an analysis  of 

Jupiter-assisted t ra jec tor ies .  

For t h i s  

SCOPE - 
This study has been performed from the point of view of the launch- 

vehicle planner, as a s tep  i n  determining what the impact of gravity-assisted 

t r a j ec to r i e s  might be on launch-vehicle requirements for  one-way unmanned 

missions. Toward t h i s  end, the launch-energy savings have been of paramount 

in t e re s t ,  although it is not possible t o  completely avoid some rudimentary 

consideration of f l i g h t  times, guidance requirements, and communication 

distances even for  a preliminary study of t h i s  nature. Nevertheless, the 

guiding philosophy has been t h a t  the  use of a gravity-assisted t ra jec tory  

is invariably a complicating mission factor  and that ser ious consideration of 

t h i s  technique should be reserved for  those missions which w i l l  reap the most 

s ign i f icant  performance benefits .  The delineation of these missions is thus 

a c r i t i c a l  f i r s t  s tep  i n  assessing the  impact of gravity-assisted t ra jec tor ies .  

To benefit  from the  conclusions of other researchers i n  t h i s  f i e ld ,  

a literature survey was conducted. It became apparent from t h i s  survey tha t  

Jup i t e r  holds great promise as a swingby ta rge t  for some of the more d i f f i c u l t  

unmanned missions (Reference 11, but there is a paucity of quant i ta t ive 

general  information on Jupiter-assisted trajectories. .  

The ana ly t ica l  phase of t h i s  investigation w a s  concerned almost 

exclusively with Jupiter-assisted t ra jec tor ies ,  since the  use of the near 

* Reference 2 contains a great deal of information on t h i s  subject,  but it 
w a s  not known t o  the authors at the  time. 
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t o  be t reated adequately i n  t h e  l i t e r a tu re .  

t r a j ec to r i e s  were analyzed. Specifically,  the  Jupi te r  

Three types of 

swingby technique was examined as an assist t o  probe the outer reaches of the 

solar system, t o  provide dras t ic  perihelion reduction for  solar probes, and 

t o  def lect  hel iocentr ic  o rb i t s  out of the e c l i p t i c  plane. 

For the first c l a s s  of missions, those t o  d is tan t  areas, the time 

of f l i g h t  becomes a dominating constraint for  several  reasons. As a conse- 

quence, a spec i f ic  objective of the analysis  was t o  determine those t ra jec-  

t o r i e s  tha t  minimize the t o t a l  f l igh t  time t o  a prescribed solar radial 

distance for a given Ear th  launch velocity. 

For the second c l a s s  of missions, the solar probes, those t ra jec-  

t o r i e s  that minimize perihelion for a given Earth launch velocity have been 

examined and compared with d i rec t  Earth launch, from both energy and time-of- 

f l i g h t  standpoints. 

impact with the Sun t o  occur, the trade-off between Earth launch velocity 

and t o t a l  t h e  of f l i g h t  w a s  determined. 

For those Earth launch ve loc i t ies  which enable actual  

For the t h i r d  c l a s s  of missions, wherein f i n a l  t r a j ec to r i e s  which 

l i e  out of the  plane of the ec l ip t ic  a r e  considered, two types of t r a j ec to r i e s  

were studied. These were t r a j ec to r i e s  which pass di rec t ly  over the  Sun, being 

inclined 90" t o  the ec l ip t i c  plane, and those which maximize the obtainable 

veloci ty  component normal t o  the ec l ip t i c  plane, a f t e r  Jupi te r  encounter, for  

a given Earth launch velocity. 

It must be emphasized t h a t  t h i s  study has been primarily concerned 

with a survey of the performance benefi ts  t o  be gained by gravity-assisted 

t r a j ec to r i e s , and  no detai led consideration has been given t o  guidance require- 

ments, communication distances, antenna pointing angles i n  r e l a t ion  t o  the 

Sun, etc. 

parameters. 

Some of the references c i t e d  do contain a few data on these other 

These considerations cannot be adequately t reated unless the 
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analysis  is r e s t r i c t ed  t o  a very specific mission, and obviously no attempt 

has been made t o  do so i n  t h i s  report. 

velocity as the only c r i te r ion  for comparing a gravity-assisted trajectory with 

a d i rec t  f l i gh t  can be quite misleading. 

sidered only as an attempt t o  identify those unmanned exploration missions 

for which the gravity-assist mode shows suf f ic ien t  promise for more detailed 

study by mission planners. 

Consequently, the use of Earth launch 

In general, t h i s  study must be con- 

APPROACH AND ASSUMPTIONS 

For the analyt ical  portion of t h i s  study, a d i g i t a l  computer pro- 

gram w a s  writ ten i n  Fortran IV for the CDC-3400 computer. 

the computational procedure may be found i n  Appendix B. 

A discussion of 

The following principal assumptions were made: 

The patched-conic-trajectory technique is applicable; that is, 

the spacecraft is under the  influence of only one a t t rac t ing  

body a t  a time. 

Both the Earth and Jupi ter  a re  in c i rcu lar  co-planar orbits.  

A l l  Earth launches make maximum use of the Eartin's orbital 

speed around the Sun by aligning the outgoing asymptote of the 

Earth-escape hyperbola with the direction of the Earth's 

motion. 

Except for those o r b i t s  specif ical ly  perturbed out of the 

ec l ip t i c  plane, all heliocentric o rb i t s  l i e  i n  the ec l ip t i c  

plane . 
Both the Ear th  and Jupi ter  a re  assumed t o  have a ephere of 

influence of zero radius (see Appendix B). 
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A l l  launch energy requirements a re  expressed i n  terms of the charac- 

t e r i s t i c  velocity, Vc9 required at a reference a l t i t ude  of 100 nautical  miles 

above the Earth's surfacec 

RESULTS OF THE STUDY 

The following discussion of the results of the s t n j  is divided 

(1) u t i l i za t ion  of Venus and Mars gravitational f ie lds ,  i n to  f ive  parts: 

( 2) Jupiter-gravity assist for deep solar  system probes, (3) Jupiter-assisted 

mission t o  Saturn, (4) Jupiter-assisted solar  probes, and (5) out-of-the- 

ec l ip t i c  missions using Jupi ter  ass is t .  

Ut i l izat ion of Venus and Mars Gravitational Fields 

The employment of gravity-assisted t ra jec tor ies  u t i l i z ing  the two 

planets closest  t o  Earth has been examined extensively by other authors. 

Many of these studies have been concerned with manned missions, the SWlngbJr 

mode being used t o  reduce Earth re-entry velocity, lengthen s tay times, or 

widen launch opportunity windows in the face of launch-energy constraints. 

References 3, 4, 5 ,  6 ,  7, and 8 are i n  t h i s  general category. 

immediate in t e re s t  for t h i s  study, however, a re  those investigations which 

u t i l i z e  the gravitational f i e lds  of Venus or Mars for  unmanned probes. 

I n  Reference 9, C a d  and Ross examined possible solar probe 

O f  more 

missions employing single or multiple Venus swingbys. 

cussing the advantages of such an approach and the mechanics of achieving it ,  

a t ten t ion  is  given t o  such de ta i l s  as spacecraft configuration, power source, 

thermal protection, a t t i t ude  control, and the guidance problem. The authors 

noted t h a t  the benefits  t o  be gained include a closer solar approach than 

obtainable by d i rec t  f l i gh t ,  an opportunity t o  conduct one or two Venusian 

I n  addition t o  dis- 
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inspections while enroute, and a general reduction i n  propulsion requirements. 

To obtain these benefits ,  they propose the use of a guidance and propulsion 

system capable of f ive in-course corrections: (1) Earth departure, (2) first 

Venusian approach, (3) first Venusian departure, (4) solar perihelion, and (5) 

second Venusian encounter. 

Venus is superior t o  d i rec t  f l i gh t  for per ihel ia  i n  the 0.3 t o  0.4 a*u. range, 

while perihelion distances as small as 0.2 a.u. appear pos6ible with substant ia l  

payload weights fo r  double-swingby t ra jec tor ies  i f  sustained and r e l i ab le  

spacecraft operation for  periods of l$ t o  2yi years is obtainable. 

C a s a l  and Ross conclude tha t  a s ingle  swingby of 

Perhaps t h e  most detailed analysis of a gravity-assisted mission 

t o  be found i n  the  l i t e r a t u r e  is contained i n  Reference 10. 

Cutting have examined, i n  de ta i l ,  one of the missions suggested by Hinovitch 

i n  Reference 11, a 1970 mission t o  Mercury using a Venus swingby. 

a t ten t ion  is given t o  the question o f  guidance requirements. 

conclude tha t  the required guidance accuracy, while more stringent than fo r  

current planetary missions, is within the state of the a r t  of current Earth- 

based radio-command systems if the vehicle is capable of performing three 

in-cel-trae corrections-one a f t e r  Earth launch, one prior t o  Venusian encounter, 

and one a f t e r  departing from Venus. 

charac te r i s t ic  velocity required for t he  mission is about 38,300 fee t  per 

Second, as compared with about 42,600 f ee t  per second for the direct  f l i g h t  

t o  Mercury a t  tha t  time. It may be observed tha t  the direct  f l i g h t  i n  t h i s  

time period would require a t  least an SLV3X-Centaur-Kick launch vehicle; 

whereas Sturms and Cutting point out that  the Atlas-Centaur can deliver over 

1300 pounds for  the indirect  f l ight  they suggest. 

Here, Sturms and 

Special 

The authors 

As a r e su l t  of the Venus encounter, the 

The literature survey a n d  the r e s u l t s  of additional analyt ical  work 

performed as par t  of t h i s  investigation indicate t h a t  Mars does not seem t o  

be par t icu lar ly  useful for gravity-assisted t ra jec tor ies  for  unmanned probes. 



7 

This is primarily a consequence of its small mass and the re la t ive ly  large 

synodic period (780 days) as compared with those of the  other planets. 

Reference 2, Miehoff examines an Earth-MarsJupiter mission and concludes 

tha t  while there is some performance advantage over the d i r ec t  f l i gh t  t o  

Jupi ter ,  the opportunities for such a mission are few, the  next one appearing 

i n  1984. 

reductions made possible by the Mars swingby do not seem t o  ju s t i fy  the added 

mission complexity. 

In  

The further conclusion is reached tha t  the moderate launch-energy 

The d i rec t  f l ight  is recommended. 

Jupiter-Gravitg A s s i s t  fo r  Deep Solar System Probes 

As mentioned previously, Jupiter seems t o  hold the  most dramatic 

promise fo r  gravity-assisted missions because of its enormous mass and because 

its synodic period is re la t ive ly  small, about 13 months. 

Figure 1 i l l u s t r a t e s  the relationship between Earth launch charac- 

t e r i s t i c  velocity and the t o t a l  minimum f l igh t  time t o  reach a desired radial 

distance from the Sun, for t ra jector ies  using Jupiter-gravity assist. The 

procedure for  computing them data is outlined i n  Appendix B, and consists of 

select ing a m i s s  distance at Jupiter which modifies the  heliocentric trajec- 

tory  of the spacecraft so as t o  minimize the  t o t a l  time for  each radial 

distance andVC combination. 

t o  Jupi te r  permitted t o  be less than 1.5 planet r ad i i .  

minimum which is probably conservative from the standpoint of risk of encoun- 

tering the Jovian atmosphere. 

In  no case was the distance of c losest  approach 

This is an arb i t ra ry  

Although a consideration o f  guidance requirements is beyond the 

scope of t h i s  paper, i t  should be noted that  the f l i gh t  times were usually 

r a the r  insensi t ive t o  var ia t ions in  Jupi ter  m i s s  distance. For example, a 

t r i p  t o  18 a.u. with Vc = 55,200 ft/sec can be accomplished i n  a m i n i m u m  of 

1420 days using an aiming point m i s s  distance, d, of about 7.6 Jupi ter  r a d i i  
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(see Figure B-2 of Appendix B for i l l u s t r a t ion  of d> . I f  an error  of one 

Jupi ter  radius  is permitted i n  either direction, the difference i n  f l i gh t  

time t o  18a.u. is increased o a y  about x) days. 

The mechanical advantages of Jupiter-assisted t r a j ec to r i e s  can be 

I n  Figure 2, time-of-flight con- 

Two e f f ec t s  a r e  apparent: 

seen by comparing Figure 1 with Figure 2. 

tours  are plotted for  direct f l i gh t s  from Earth. 

the minimum launch veloci t ies  for- probing the outer reaches of the solar 

system a re  reduced by Jupi ter  swingby, and second, use of the Jupi ter  assist 

can be elected t o  reduce e i ther  launch-velocity requirements or  times of 

f l i gh t ,  i n  general. 

I f  the m a x i m u m  permissible time of f l i gh t  is a l imit ing constraint ,  

i t  is interest ing t o  note the velocity savings which can be obtained for  a 

fixed f l i g h t  time. This is shown i n  Figure 3, wherein the difference has 

been computed between the velocity required fo r  d i rec t  f l i gh t  and that 

required t o  obtain the same t o t a l  f l igh t  time for the Jupiter-swingby mode. 

This velocity difference may be viewed as an equivalent velocity increment 

which must be provided ei ther  by a propulsion stage or by the Jupi ter  swingby 

t o  achieve the given distance i n  a given time. 

17a.u. is postulated t o  have a flight-time constraint  of loo0 days, the 

Jupi te r  assist is seen t o  be equivalent t o  about a 7000 ft/sec upper stage. 

For example, if a mission t o  

It may be noted that the velocity savings for  a l l  f l i gh t  times l e s s  

than loo0 days a re  very nearly the same; furthermore, these l ines  terminate 

near 20 arur  because t h i s  is the limiting distance for  d i r e c t  n i g h t s  of loo0 

days or  less using reasonable launch ve loc i t ies  (see Figure 2). 

the lines for  the greater f l igh t  times have a lower bound which is the least 

distance reached i n  the specified time using optimized Jupi ter  assist. 

Similarly, 

I n  Figure 4, a different approach is taken. Here, the launch velo- 

c i t y  is  a parameter and the f l i gh t  time savings obtained by Jupi ter  swingby 
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are plotted. 

time with Jupi ter  assist are provided. Interestingly,  the greater time 

savings occur for  the lower Earth launch velocit ies.  

t h i s  f igure is included only t o  show the trends; a comparison in t h i s  region 

is not valid since f l i gh t  beyond 11 a.u. is not Bossible by direct  f l i g h t  with 

vC = 50,000 ft/sec. 

To provide a convenient reference, contours of constant f l i gh t  

The dashed portion of 

Jupiter-Assisted Mission t o  Saturn 

In  the preceding paragraphs, probes t o  the outer reaches of the 

solar system have been studied with no attempt t o  a r r ive  at a specific planet. 

A refinement of t h i s  idea has been studied by Niehoff (Reference 21, wherein 

a swingby of Jupi ter  is used as an a s s i s t  t o  reach Saturn. 

examines a mission occuring during a 1977 launch opportunity, but indicates 

that s i m i l a r  opportunities wi l l  occur i n  1.976 and 1978. 

1072 days with an Earth-launch characterist ic velocity of 50,000 ft/sec. 

This would mean tha t  a spacecraft weighing w e l l  over lo00 pounds could be 

launched by a Saturn IB-Centaur vehicle. 

flown di rec t ly  wi th  a characterlst ic velocity of about 52,400 ft/sec (see 

Figure 2), a payload of the same magnitude would require the addition of a 

kick stage t o  the Saturn lB-Centaur vehicle. 

The author 

Saturn is reached in 

Although the Same mission can be 

The use of Jupi ter  assist t o  actual ly  reach planets beyond Saturn 

has not been explored, but the relat ive benefi ts  t o  be obtained may be even 

greater  than for Saturn i f  the planetary conjunctions permit t h e  rea l iza t ion  

of the  potent ia l  energy gains. 

Jupiter-Assisted Solar Probes 

Figure 5 shows the velocity requirements and t r i p  times for solar  

probes launched d i rec t ly  from Earth and those using Jupi ter  assist. As 
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c l discussed i n  Appendix B, passage is in  front of Jupi ter  with a turning angle 

selected t o  minimize the f i n a l  heliocentric velocity of the  spacecraft. 

encounter, the spacecraft is at the aphelion of a new e l l i p t i c a l  o rb i t  with a 

reduced perihelion. 

After 

It can be seen i n  Figure 5 t ha t  perihelion diStanCe6 closer than 

about 0.3 a.u. are obtained with smaller launch ve loc i t ies  i f  the Jupiter- 

evingby mode is used. 

apparent, but so is the rather  substantial  flight-time penalty associated 

with the circui tous route past Jupiter. 

An enormous saving for  the very close solar  probes is 

It is possible t o  reduce significantly the Jupiter-swingby f l i gh t  

times for  solar  probes, a t  the expense of Earth-launch velocity. 

tradeoff of t h i s  nature is i l l u s t r a t ed  i n  Figure 6 for  probes which impact on 

the  Sun. 

permit the f ina l  heliocentric velocity a f t e r  Jupi ter  encounter t o  be directed 

r ad ia l ly  toward the Sun. 

bound and inbound t ra jector ies .  

s ince the combination of turning angle and approach velocity for  higher energy 

t r a j ec to r i e s  can require passage closer than the adopted minimum of 1.5 

Jupi ter  rad i i .  

A par t icular  

Here, launch ve loc i t ies  greater than 50,000 ft/sec are used t o  

A flight-time saving is obtained on both the out- 

A l imitat ion exists, as shown i n  the  figure, 

Out-of-the-Ecliptic Missions Using Jupi ter  A s s i s t  

The attainment of orbi ta l  paths far removed from the plane of the 

e c l i p t i c  is extremely expensive, in terms of launch energy, i f  only the more 

obvious d i rec t  f l i g h t s  from Earth orbi t  are considered. 

po in ts  out that a launch velocity near 140,000 ft/sec is required t o  launch 

d i r ec t ly  from Earth 90 degrees out of the ec l ip t i c  plane and go over the Sun 

at a distance of 1a.u. He suggests that a Jupi ter  swingby could do as w e l l  

w i t h  an Earth launch velocity of 52,000 ft/sec. 

Hunter (Reference 1 )  

Figure 7 v e r i f i e s  t h i s  
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conclusion and shows the relationship between height out of the ec l ip t i c  at 

Sun passage for two types of swingbys. These types are discussed more fu l ly  

i n  Appendix B; but br ief ly ,  one swingby is designed to  def lect  the heliocen- 

t r i c  o rb i t  90 degrees from the ecl ipt ic ,  while the other def lects  the final. 

o rb i t  t o  a smaller inclination angle, but i n  such a way as t o  maximize the  

component of spacecraft velocity normal t o  the ec l ip t i c  plane. 

type of t ra jectory actually passes direct ly  over the Sun, the  second type 

being inclined at the angles shown i n  Figure 8. I n  general, of course, a 

wide range of inclination angles is obtainable, but only these two types a re  

considered since the primary purpose was t o  i l l u s t r a t e  the power of the 

Jupi ter  swingby i n  producing o rb i t s  f a r  removed from the ec l ip t i c  plane. 

Only the f i r s t  

The "ype I1 t ra jec tor ies  always require turning the  r e l a t ive  

velocity vector 90 degrees during Jupiter swingby, whereas the Type I turning 

angles are s l igh t ly  smaller but i n  a different  plane, as discussed i n  Appen- 

dix B. 

than 1.5 Jupi ter  r a d i i  i f  E a r t h  launch veloci t ies  much beyond 60,000 ft/sec 

are  used. 

These turning angles are  sufficiently large t o  require passage closer 

This may be inferred from an inspection of Figure B-2 i n  Appendix B 

Figure 9 presents the maximum distance from the ec l ip t i c  plane 

reached by these t ra jector ies .  

minimum-energy orb i t  t o  Jupiter can be deflected t o  produce a new heliocentric 

o rb i t  inclined over 23 degrees t o  the ec l ip t ic  plane and reaching almost 2.5 

AU above the  plane a t  its highest point. 

are not possible unless the relat ive approach velocity a t  Jupi ter  exceed6 

Jup i t e r ' s  o rb i t a l  speed aroung the Sun. 

ft/sec Earth launch characterist ic velocity. 

It is interest ing t o  note that  even a 

Type I orb i t s ,  inclined 90 degrees, 

T h i s  occurs for s l igh t ly  over 50,OOO 
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CONCLUSIONS 

The r e s u l t s  of t h i s  study suggest t ha t  gravity-assisted t r a j ec to r i e s  

deserve very serious consideration for four types of the more strenuous 

unmanned missions: 

(1) 

(2) Probes t o  the near vicinity of the Sun, from 0.4 a.u. t o  impact 

(3) 

Probes t o  the planet Mercury 

Probes t o  the outer reaches of the solar system beyond Jupiter,  

including missions t o  the  outer planets 

Probes t o  regions out of the  ec l ip t i c  plane. (4) 

Mars does not represent suff ic ient  potent ia l  t o  w a r r a n t  the  added 

complexity of swingby t r a j ec to r i e s  for unmanned probes. 

Venus and Jupi te r  appear t o  be useful for  these--Venus being u t i l i zed  for  the 

Mercury probes and solar probes from about 0.4 a.u. t o  possibly as close as 

0.2 a.u., and Jupi te r  being used f o r  the remainder. 

Only swingbys of 

Although the Venus-gravity-assisted solar probes and the missions 

t o  Mercury have been analyzed i n  detail ,  the Jupiter-assisted missions have 

not been explored i n  depth, and a definit ive study of each of the suggested 

Jupi ter  missions is required t o  properly weigh the  conflicting mission fac tors  

such as energy requirements, t r i p  times, spacecraft r e l i ab i l i t y ,  guidance 

problems, antenna pointing angles, communication distances, etc. The inescapa- 

b le  f l i g h t  through the asteroid belt for  Jupi ter  missions also requires 

special  consider a t  ion. 
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APPEM)IX B 

NOMCLATURE FOR APPENDIX B 

Semi-major axis of final heliocentric t ra jectory 

Semi-major ax is  of ini t ia l  heliocentric t ra jectory 

Semi-minor axis of final heliocentric t ra jectory 

Aiming point m i s s  distance a t  Jupi ter  in plane normal t o  r e l a t ive  
velocity vector 

Eccentricity of final heliocentric orb i t  

Eccentricity of i n i t i a l  heliocentric o rb i t  

Height above the ec l ip t i c  plane 

Inclination angle of final t ra jectory -5th res,-ec+, t-c! s l i p t i c  
plane 

Radial distance from Sun 

Radial distance from Sun t o  aphelion of f ina l  heliocentric 
t ra jectory 

Radial distance of Earth orbit  from Sun 

Radial distance from Sun to llinal heliocentric t ra jectory where 
t rue anomaly is 90 degrees (Semi-latus r e c t w )  

R a d i a l  distance of Jupiter o rb i t  from Sun 

Radius of Jupi ter  

R a d i a l  distance from Sun t o  perihelion of f inal  heliocentric 
t ra jectory 

Distance from center of Jupiter t o  perijove of swingby t ra jectory 

Time of f l i g h t  From swingby t o  aphelion of f i n a l  heliocentric 
t ra jectory 

To ta l  time of f l i gh t  

Time of f l i g h t  from E a r t h  launch t o  encounter 

Time of f l i gh t  from perihelion t o  encounter for  f inal  heliocentric 
t ra jectory 

Time of f l i gh t  from perihelion t o  any radial distance for f i n a l  
heliocentric trajectory 
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vC 

vE 

4 
Y 

PS 

P 

8 

8. 
I 

Characterist ic velocity at 100 nautical  mile reference a l t i t ude  

Velocity of Earth in its orbit 

Earth escape velocity a t  100 naut ical  mile reference a l t i t ude  

Hyperbolic excess velocity a f t e r  Earth launch 

Velocity of the planet 

Initial re l a t ive  velocity o f  spacecraft with respect t o  planet 

Velocity of spacecraft with respect t o  Sun 

Final heliocentric velocity after planetary encounter 

Velocity of spacecraft with respect t o  Sun at planetary encounter 

Flight path angle, from the radial direction, of the final 
heliocentric orb i t  after planetary encounter 

Flight path angle, from the radial direction, of the initial 
heliocentric orb i t  at planetary encounter 

Turning  angle of r e l a t ive  velocity vector at encounter 

Gravitational conetant for Jupi ter  

Gravitational constant for the  Sun 

Angle between the i n i t i a l  r e l a t ive  velocity and the planet 's  
velocity vector 

True anomaly of heliocentric orb i t ,  measured from perihelion 

True anomaly of f i n a l  heliocentric o rb i t  

True anomaly of in i t ia l  heliocentric orb i t  



COMPUTATIONAL PROCEDURE 

The specific equations used i n  t h i s  study were derived i n  a 

manner similar t o  that used for several of the papers l i s t e d  in the bibl i -  

ography. 

one celestial body w a s  assumed t o  be a t t r ac t ing  the spacecraft at any one 

time. 

force f i e l d  wherein the gravitational a t t r ac t ion  is toward the center and 

obeys the inverse square l a w .  

I n  t h i s  approach, a patched conic technique was used whereby only 

Furthermore, the a t t rac t ing  body vas represented as an idea l  cen t ra l  

A further computational simplification was real ized by assuming 

Chat both the W t h  a c !  &met encountered have a sphere of influence of 

zero radius  i n  the Sun-centered frame of reference of Figure B-1. 

precise treatment would employ a f in i t e  radius  about each planet wherein 

the influence of the planet would dominate t h a t  of the  Sun. 

fcx J-Gi&ter this sphere of influence exceeds a radius of 0.3 a.u., but the 

e f fec t  of neglecting t h i s  distance i n  computing the in i t ia l  velocity 

r e l a t ive  t o  Jupi ter  is not f e l t  t o  be s ignif icant  for  our purposes. 

addition, the Earth and planet encountered are assumed t o  be i n  co-planar 

c i rcu lar  o rb i t s  and a l l  spacecraft t r a j ec to r i e s  l i e  i n  t h i s  plane, except 

for  those o rb i t s  which a re  specifically deflected out of the ec l ip t i c  plane 

a f t e r  Jupi ter  encounter. 

A more 

For example, 

I n  

A flow diagram of the trajectory calculations performed on a 

CDC-3400 computer is shown in Figure B-2. 

with the  selection of a value ofVc, the character is t ic  velocity a t  a 

reference a l t i t ude  of 100 nautical miles above the Earth. 

excess velocity a f t e r  Earth escape is given by 

The computational sequence began 

The hyperbolic 

V H L =  ,/- (1) 
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I 
1 
I 
I 
1 
'I 

where Ve is the Earth escape velocity. 

i n i t i a l  heliocentric orb i t  w a s  obtained by adding the velocity of the Earth 

about the Sun t o  t h e  hyperbolic excesa velocity 

The perihelion velocity of the 

where V 

about the Sun. 

is the perihelion velocity and VE is the Earth c i rcu lar  velocity 
PS 

Establishing the perihelion velocity, V w i l l ,  i n  turn, deter- 

The eccentricity of 
PS' 

mine the geometry of the i n i t i a l  heliocentric orbit .  

the  in i t ia l  orb i t  is given by the  following equation: 

- I  
RE 

ei - 
P S  

( 3 )  

where i s  the Earth 's  

o rb i t a l  radius. Referring t o  Figure B-1, i t  is now possible t o  determine 

the spacecraft 's  location and velocity vector a t  a par t icular  r ad ia l  dis- 

tance from the Sun. 

ps is the gravitational constant of the Sun and 

L e t  R denote the  orb i ta l  radius of the planet t o  be encountered. 3 
Then the spacecraft 's  location, velocity magnitude and direction (heading 

angle) were calculated by the  following equations: 

e I = c o s - ' {  -+- RE I + I ) -  --} I 
j ei ei 

(4) 
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It should be noted tha t  the selection of V completely defines the ini t ia l  

conditions a t  the planet t o  be encountered, within the assumptions of t h i s  
C 

analysis. 

The final calculation which was made with reference t o  the i n i t i a l  

o rb i t  w a s  the  f l i g h t  time from perihelion t o  encounter. The time of f l i gh t  

calculation is given by one of two expressions, depending on t he  type of 

orbi t .  For ei greater than zero and less than one ( e l l i p t i c a l  o rb i t s )  

the f l i gh t  time is given by 

where 

and 

RE - 

RE ':s 
Ps 

ai  = 

2 -  

For e. greater than one (hyperbolic orb i t ) ,  the f l i gh t  time 
1 

expression becomes 

where RE ai = 
R~ ";si - 2  PS 

(11) 

and ei is the same as above. 

A t  t h i s  point, the parameters associated with the encounter were 

determined, 

veloci ty  vector through some angle Y see Figure B-3. The i n i t i a l  

The e f fec t  of a swingby is t o  turn the initial r e l a t ive  

r e l a t i v e  velocity is given in terms of the  i n i t i a l  conditions at encounter 

by the following expressions: 

I Vpsi c 0 s P i  
p = tan-' { - vPsi sinpi 

(12) 
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where V. is the velocity of the planet, p is the  angle between the  i n i t i a l  
J 

re la t ive  velocity and the  planet ' s  velocity, and V is the initial r e l a t ive  
p j  

velocity (see Figure B-3). 

The calculation procedure w a s  t o  select a given turning angle, 

Y , within the possible range, and then t o  determine the new heliocentric 

orbit .  For each value of Y , t he  r e l a t ive  velocity vector assumes a new 

orientat ion with respect t o  the velocity vector of the planet encountered, 

as seen i n  Figure B-3. To determine the possible turning angle, Y can be 

where I: is the perijove distance, r is the planet'6 radius, and p j  is 

the planet' s gravi ta t ional  constant (see Figures B-4 and B-5) 
Pj 3 

The only 

real l imitat ion on turning angle is seen t o  be the necessity t o  avoid impact 

with the surface ( f = i )  . This places a constraint  on the  maximum 

turning angle which var ies  with Vc. 

t o  avoid the planet ' s  atmosphere. 

requiring passage closer than - 
Therefore, the  range of Y is given by 

r 

In practice,  i t  would also be necessary 

For t h i s  reason, no turning angles 

pi = 1.5 were considered i n  the computations. 
'I 
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The selection of y a l s o  determines a m i s s  distance, d, which 

is useful for  guidance. The m i s s  distance is given by the expression 

Figures B-4 and B-5 a r e  p lo t s  of turning angle versus m i s s  distance for  

various Vc. These Figures are  for  the  planets Jupi ter  and Mars. 

Referring to  Figure B-3, the new heliocentric velocity of the 

spacecraft increases i f  y 

(posit ive y 1, corresponding t o  passage behind the planet. 

case depicted i n  Figure B-3. I f  passage is ahead of the  planet, y w i l l  

be i n  a 

w i l l  be reduced, in general. 

is i n  the counter-clockwise direction 

This is the 

clockwise direction (negative y ), and the  heliocentric velocity 

The final heading angle, heliocentric velocity, and eccentricity 

a f t e r  encounter are given by 

1 v, - vpj cos ( p  + y )  
pt = tan-' { 

Vpj sin ( p  + 7) 

R~ s i n 2 P f  Vpsf 
e = { I -  

f PS ( 2 -  PS 

and 

(17) 

(19) 

Each new heliocentric orb i t ,  corresponding t o  each selected value of 

w a s  tes ted t o  determine if it were e l l i p t i c a l  or hyperbolic. 

(O<ef < 1 )  , the  aphelion distance and the t o t a l  time from Earth launch 

t o  aphelion were computed. , 
the  times of f l i gh t  t o  various specified rad ia l  distances from the Sun 

were computed. 

y , 
If e l l i p t i c a l  

I f  the new orb i t  were hyperbolic (ef > I ) 
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If e is between zero and one, the aphelion distance is given f 

R i  
a =  f 

J 

Rj ViSf 
2- - 

(21) 

PS 
The time of f l i g h t  from encounter t o  aphelion was calculated by first 

calculat ing the time of f l i g h t  from perihelion t o  aphelion and then sub- 

t r ac t ing  the time from perihelion t o  encounter. The f i n a l  expression for  

the time of f l i g h t  from encounter to  aphelion was 

H - L 2 tan-! ' 
92 r r - -- 

taf - 
where 

The t o t a l  time of f l igh t  was then obtained by adding the 

t i m e  from launch t o  encounter, ti, t o  taf: 

if = taf + ti 

\ l  1 (22) 
/ J  J 

(23) 

f l i g h t  

( 24) 

If C > I f (hyperbolic o rb i t ) ,  a range of r a d i a l  distance was 

specif ied and the times o f  f l igh t  t o  these distances were calculated. 

time of f l i g h t  from perihelion t o  R ,  some radial distance, is given by 

The 

(25) 
'2 + sin 8 - In t,f= f i  - (8' I + e f  case 

where 

and 
PS 

e=  cos-i { + Pf - , I}  

(26)  
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fkom 

I 
1 
I 

I 
I 
I 

where 

The perihelion distance, R in Equation 27 for  8 w a s  calculated 
Pf 

-111 Bf = cos-'{ +f [ af(ef2-I) 

R i  
(29) 

The f l i g h t  time from perihelion t o  encounter must be subtracted 

from trf and t h i s  r e s u l t  added t o  ti t o  obtain the  t o t a l  f l i g h t  time. 

With tjf denoting f l i gh t  time from perihelion t o  encounter, 

3 {ef +sin of 
t - In if= l + e f  

J.+.l + +i tan+ gf 

and the t o t a l  f l i g h t  time is 
tf = ti + trf - tjf (31) 

After the  range of 7 ' 6  w a s  completed, a new value of V was C 

selected and the complete process just described was repeated. 

To minimize the f l i g h t  time fo r  a value of V and specified radii, C 
the  turning angle yielding minimum time w a s  determined from an examination 

of the computer print-out. The associated minimum time of f l i g h t  was 

plot ted versus radial distance for  each selected V 

plo t  was made fo r  fixed time of f l igh t  to i l lust rate  the relat ionship 

Finally, a cross  c' 

between r a d i a l  distance and Vc. These p lo t s  appear i n  the  body of the text. 

For solar probes, the  perihelion of the new heliocentric tra- 

jectory was minimized by turning the  r e l a t i v e  velocity vector so that the 

new heliocentric velocity is made as small as possible. Figure B-3 shows 

t h a t  t h i s  is accomplished by turning the  r e l a t i v e  velocity vector clockwise 

(passage ahead of  the planet) such that the f ina l  r e l a t i v e  velocity is 

opposite t o  the direct ion of the  p lane t ' s  velocity vector. The perihelion 

can be reduced t o  zero i f  the relat ive velocity vector is equal i n  magnitude 
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t o  the velocity of the planet encountered and i f  the turning angle can be 

negotiated. 

helion t o  zero i f  Vc is approximately equal t o  5 0 , h  ft/sec. 

For example, a Jupi ter  swingby can be used t o  reduce the peri- 

A part icular  type of trajectory occurs for those solar probes 

which impact on the Sun a f t e r  Jupiter encounter. 

velocity vector is turned clockwise (passage ahead of Jupi ter)  i n  such a 

A t  Jupi ter ,  the re la t ive  

way that the f i n a l  heliocentric velocity is directed rad ia l ly  inward toward 

the Sun. For t h i s  special  type of trajectory,  from the vis-viva integral ,  

Equation 33 is integrated t o  y ie ld :  

For the special  case, Ro = R .  and R=O, so the time of f l i gh t  expression is 

arrived a t  for the inbound portion of the solar impact probe trajectory: 
J 

The semi-major ax is  of the perturbed t ra jectory,  a is evaluated 
f '  

from the vis-viva, Equation 32. 
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OUT-OF-THE-ECLIPTIC ANALYSIS 

An o rb i t  out of the ecl ipt ic  plane can be accomplished i f  the 

probe i s  disturbed very s l igh t ly  out of the ec l ip t i c  by a mid-course 

correction and made t o  pass the encountered planet above or below the 

ec l ip t i c  plane. 

the probe w i l l  swing in to  an orb i t  whose plane is other than the ecl ipt ic .  

I n  t h i s  section, the in t e re s t  is i n  determining the m a x i m u m  distances that 

can be obtained from the ec l ip t i c  plane using a Jupi ter  swingby. 

W I L ~  be a mximm distance for each launch velocity, Vc. 

Then, under the gravitational influence of the planet, 

There 

-2 -I .I 

Referring t o  Figure B-3, the initial re la t ive  velocity vector 

w a s  r e s t r i c t ed  t o  turning angles for  which the locus of possible end points 

of the f i n a l  heliocentric velocity vector l i e  i n  the ec l ip t i c  plane. 

the more general case of o rb i t s  out of the ec l ip t ic ,  the locus of possible 

end points of the  f inal  heliocentric velocity vector w i l l  l i e  on a sphere. 

The excluded region will now become a cone section of some so l id  angle which 

is a function of the characterist ic launch velocity. 

the cone section can be calculated using Figure B-4. 

used t o  obtain the possible turning angle, y for  a givenV and d/rj. 
The vertex angle is then given by 

For 

The vertex angle of 

Figure B-4 can be 

C 

vertex angle = 360" - 2 7  

The selection of two possible swingby t ra jec tor ies ,  shown i n  

. 
Figures B-6 and B-7, a re  considered in detail .  

t ra jec tory  which is inclined 90" t o  the ecl ipt ic .  

be denoted as Type I. 

maximum f i n a l  heliocentric velocity component normal t o  t h e  ec l ip t i c  plane, 

and they w i l l  be designated Type I1 t ra jector ies .  

Figure B-6 i l l u s t r a t e s  a 

These t r a j ec to r i e s  w i l l  

Figure B-7 represents t ra jec tor ies  which have a 
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The turning angle required for  Type I and I1 t ra jec tor ies  is 

equal t o  or less than 90". Therefore, i f  passage distance, ( -) 'P , is 
'1 

limited t o  1.5 planet radii, t h e  m a x i m u m  character is t ic  ear th  launch 

velocity is approximately equal t o  60,000 ft/sec, 

Referring t o  Figures B-6 and B-7, the f ina l  heliocentric velocity 

magnitude is given by 

V PSf = 4v- (36) 

where V is the r e l a t ive  velocity and V is Jup i t e r ' s  velocity. The plus 

sign i n  Equation 1 is used for  Type I1 t ra jec tor ies  and the minus sign for  
P3 3 

Type I* 

at encounter, the  eccentricity of t h e  new o rb i t  becomes 

To determine the maximum distance from the ec l ip t ic ,  the 

expression for the semi-minor axis w i l l  be needed. The semi-minor axis 

is given by 

b = R j  
I - ef 

velocity, 

2 where V 
j 

Rewriting Equation 38 i n  terms of the  final heliocentric 

2 
( Vpsf / vj 1 J 2- ( Vpsf / V j P  

b = R j  

j' has been substituted for p s/b 

(39) 

The maximum distance out of the ec l ip t i c  plane can now be cal- 

culated from 

(40) h = b s i n  i, 

where i is defined as the t ra jectory 's  incl inat ion angle. A plot of h 

versus character is t ic  velocity fo r  Type I and I1 t ra jec tor ies  is plotted 

i n  Figure 9. 
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For “ype I trajector ies ,  the incl inat ion angle is gooitherefore 

from Equation 4 0  it is apparent tha t  the  maximum distance is equal t o  the 

semi-minor axis of the trajectory.  

The inclination angle for Type I1 t ra jec tor ies  is given by 

J 

Figure 8 is a p lo t  of inclination angle versus character is t ic  

velocity, V c’ 
The distance from the ec l ip t ic  plane as the probe passes the Sun 

is of in t e re s t  and can be determined fo r  the two types of swingby trajec- 

t o r i e s  analyzed i n  this section. The distance from the Sun t o  the probe, 

at Sun passage is given by 

R h  = R .  ( I + e f )  
J 

Substi tuting for  e i n  Equation 42 from Equation 37, % is f 

obtained i n  terms of (vpsf/vj) , 

(42) 

The distance from the ec l ip t ic  plane is obtained by multiplying 

% by sin i: 

h - R  sinL h (44) 

Figure 7 is a plot of h versus character is t ic  velocity for  both 

types of orbits.  
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