71 research outputs found

    Prospects for determining air shower characteristics through geosynchrotron emission arrival times

    Get PDF
    Using simulations of geosynchrotron radiation from extensive air showers, we present a relation between the shape of the geosynchrotron radiation front and the distance of the observer to the maximum of the air shower. By analyzing the relative arrival times of radio pulses at several radio antennas in an air shower array, this relation may be employed to estimate the depth of maximum of an extensive air shower if its impact position is known, allowing an estimate for the primary particle's species. Vice versa, the relation provides an estimate for the impact position of the shower's core if an external estimate of the depth of maximum is available. In realistic circumstances, the method delivers reconstruction uncertainties down to 30 g/cm^2 when the distance to the shower core does not exceed 7 km. The method requires that the arrival direction is known with high precision.Comment: 7 pages, 9 figures. Accepted for publication in Astroparticle Physics

    Possibility of Using a Satellite-Based Detector for Recording Cherenkov Light from Ultrahigh-Energy Extensive Air Showers Penetrating into the Ocean Water

    Full text link
    We have estimated the reflected component of Cherenkov radiation, which arises in developing of an extensive air shower with primary energy of 10^20 eV over the ocean surface. It has been shown that, under conditions of the TUS experiment, a flash of the reflected Cherenkov photons at the end of the fluorescence track can be identified in showers with zenith angles up to 20 degrees.Comment: 5 pages, 3 figures. This preprint corrects errors which appeared in the English version of the article published in Bull. Rus. Acad. Sci. Phys., 2011, Vol. 75, No. 3, p. 381. The original russian text was published in Izv. RAN. Ser. Fiz., 2011, Vol. 75, No. 3, p. 41

    Simulation of propagating EAS Cherenkov radiation over the ocean surface

    Full text link
    We present computing results of the Cherenkov light propagation in air and water from extensive air showers developing over the ocean. Limits on zenith angles of the showers, at which the registration of flashes of reflected Cherenkov photons by the satellite-based detector TUS is possible, are analyzed with consideration for waves on the ocean surface.Comment: 10 pages, 2 figures, 1 table. This preprint corrects errors which appeared in the English version of the article published in Mosc. Univ. Phys. Bull., 2011, Vol. 66, No. 5, p. 478. The original russian text was published in Vest. Mosk. Univ. Fiz., 2011, No. 5, p. 6

    Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30

    Get PDF
    When Ultra High Energy Cosmic Rays interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating toward the ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas investigating the radio emission from these showers in detail and clarifying if the technique is useful for largescale applications. LOPES-30 is co-located and measures in coincidence with the air shower experiment KASCADE-Grande. Status of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U

    Radio emission of highly inclined cosmic ray air showers measured with LOPES

    Get PDF
    LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a significant number of cosmic ray air showers with a zenith angle larger than 50∘^{\circ}, and many of these have very high radio field strengths. The most inclined event that has been detected with LOPES-10 has a zenith angle of almost 80∘^{\circ}. This is proof that the new technique is also applicable for cosmic ray air showers with high inclinations, which in the case that they are initiated close to the ground, can be a signature of neutrino events.Our results indicate that arrays of simple radio antennas can be used for the detection of highly inclined air showers, which might be triggered by neutrinos. In addition, we found that the radio pulse height (normalized with the muon number) for highly inclined events increases with the geomagnetic angle, which confirms the geomagnetic origin of radio emission in cosmic ray air showers.Comment: A&A accepte

    On noise treatment in radio measurements of cosmic ray air showers

    Get PDF
    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.Comment: 4 pages, 6 figures, submitted to NIM A, Proceedings of ARENA 2010, Nantes, Franc

    The LOPES experiment - recent results, status and perspectives

    Full text link
    The LOPES experiment at the Karlsruhe Institute of Technology has been taking radio data in the frequency range from 40 to 80 MHz in coincidence with the KASCADE-Grande air shower detector since 2003. Various experimental configurations have been employed to study aspects such as the energy scaling, geomagnetic dependence, lateral distribution, and polarization of the radio emission from cosmic rays. The high quality per-event air shower information provided by KASCADE-Grande has been the key to many of these studies and has even allowed us to perform detailed per-event comparisons with simulations of the radio emission. In this article, we give an overview of results obtained by LOPES, and present the status and perspectives of the ever-evolving experiment.Comment: Proceedings of the ARENA2010 conference, Nantes, Franc

    Radio emission of highly inclined cosmic ray air showers measured with LOPES

    Get PDF
    LOPES (LOFAR Prototype Station) is an array of dipole antennas used for detection of radio emission from air showers. It is co-located and triggered by the KASCADE (Karlsruhe Shower Core and Array Detector) experiment, which also provides informations about air shower properties. Even though neither LOPES nor KASCADE are completely optimized for the detection of highly inclined events, a significant number of showers with zenith angle larger than 50o^o have been detected in the radio domain, and many with very high field strengths. Investigation of inclined showers can give deeper insight into the nature of primary particles that initiate showers and also into the possibility that some of detected showers are triggered by neutrinos. In this paper, we show the example of such an event and present some of the characteristics of highly inclined showers detected by LOPES

    Frequency spectra of cosmic ray air shower radio emission measured with LOPES

    Get PDF
    AIMS: We wish to study the spectral dependence of the radio emission from cosmic-ray air showers around 100 PeV (1017 eV). METHODS: We observe short radio pulses in a broad frequency band with the dipole-interferometer LOPES (LOFAR Prototype Station), which is triggered by a particle detector array named Karlsruhe Shower Core and Array Detector (KASCADE). LOFAR is the Low Frequency Array. For this analysis, 23 strong air shower events are selected using parameters from KASCADE. RESULTS: The resulting electric field spectra fall off to higher frequencies. An average electric field spectrum is fitted with an exponential, or alternatively, with a power law. The spectral slope obtained is not consistent within uncertainties and it is slightly steeper than the slope obtained from Monte Carlo simulations based on air showers simulated with CORSIKA (Cosmic Ray Simulations for KASCADE). One of the strongest events was measured during thunderstorm activity in the vicinity of LOPES and shows the longest pulse length measured of 110 ns and a spectral slope of -3.6. CONCLUSIONS: We show with two different methods that frequency spectra from air shower radio emission can be reconstructed on event-by-event basis, with only two dozen dipole antennae simultaneously over a broad range of frequencies. According to the obtained spectral slopes, the maximum power is emitted below 40 MHz. Furthermore, the decrease in power to higher frequencies indicates a loss in coherence determined by the shower disc thickness. We conclude that a broader bandwidth, larger collecting area, and longer baselines, as will be provided by LOFAR, are necessary to further investigate the relation of the coherence, pulse length, and spectral slope of cosmic ray air showers.Comment: 13 pages, 21 figures. Nigl, A. et al. (LOPES Collaboration), Frequency spectra of cosmic ray air shower radio emission measured with LOPES, accepted by A&A on 17/06/200

    Air Shower Measurements with the LOPES Radio Antenna Array

    Get PDF
    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from Extensive Air Showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPES-STAR) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.Comment: 8 pages, 10 figures, Contribution to the Arena 2008 conference, Rome, June 200
    • 

    corecore