14,101 research outputs found

    Efficient absolute aspect determination of a balloon borne far infrared telescope using a solid state optical photometer

    Get PDF
    The observational and operational efficiency of the TIFR 1 meter balloon borne far infrared telescope has been improved by incorporating a multielement solid state optical photometer (SSOP) at the Cassegrain focus of the telescope. The SSOP is based on a 1-D linear photo diode array (PDA). The online and offline processing schemes of the PDA signals which have been developed, lead to improvement in the determination of absolute telescope aspect (\sim 0\farcm8), which is very crucial for carrying out the observations as well as offline analysis. The SSOP and its performance during a recent balloon flight are presented here.Comment: To appear in the February 2000 issue of the PAS

    Cohesion, Elastic Constants and Vibrational Mechanics of Fcc Platinum

    Get PDF
    A model in real space has been developed by extending the generalized form of the exponential potential known as extended generalized exponential potential (EGEP) to account for (a) the correct nature of repulsive and attractive components of forces for all the separations in general and that of small separations in particular, (b) the three-body forces such as volume forces in an indirect way in the framework of EGEP through the parameter n, (c) the dielectric screening functions in an alternative and simpler form through the parameter m. The model is employed to compute the cohesive energy, second-order elastic constants and phenon spectra for fcc platinum. The predictions show promising agreement with experimental findings.Author Affiliation: Divesh Verma A. F. School of Engineering and Technology, Dhauj-121 004, Haryana, India M L Verma* and A Verma Department of Physics, GGDSD College, Palwal-121 102, Haryana, India and R P S Rathore Department of Physics, B.M.A.S. Engineering College, Agra-282 002, Uttar Pradesh, India1.A. F. School of Engineering and Technology, Dhauj-121 004, Haryana, India 2.Department of Physics, GGDSD College, Palwal-121 102, Haryana, India 3.Department of Physics, B.M.A.S. Engineering College, Agra-282 002, Uttar Pradesh, Indi

    Elastic Behaviour and Phonons in BCC Tantalum

    Get PDF

    Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372

    Full text link
    A low molecular mass alkaliphilic extra-cellular lipase of Bacillus cereus MTCC 8372 was purified 35-fold by hydrophobic interaction (Octyl-Sepharose) chromatography. The purified enzyme was found to be electrophoretically pure by denaturing gel electrophoresis and possessed a molecular mass of approximately 8 kDa. It is a homopentamer of 40 kDa as revealed by native-PAGE. The lipase was optimally active at 55 &deg;C and retained approximately half of its original activity after 40 min incubation at 55 &deg;C. The enzyme was maximally active at pH 8.5. Mg 2+ , Cu 2+ , Ca 2+ , Hg 2+ , Al 3+ and Fe 3+ at 1 mM enhanced hydrolytic activity of the lipase. Interestingly, Hg 2+ ions synergized and Zn 2+ and Co 2+ ions antagonized the lipase activity. Among surfactants, Tween 80 promoted the lipase activity. Phenyl methyl sulfonyl fluoride (PMSF, 15 mM) decreased 98% of original activity of lipase. The lipase was highly specific towards p -nitrophenyl palmitate and showed a V max and K m of 0.70 mmol.mg &minus;1 .min &minus;1 and 32 mM for hydrolysis of p NPP.<br /

    Effect of Nucleation on the Stability of BCC In-Tl alloy

    Get PDF

    Universal Scaling in Mixing Correlated Growth with Randomness

    Full text link
    We study two-component growth that mixes random deposition (RD) with a correlated growth process that occurs with probability p. We find that these composite systems are in the universality class of the correlated growth process. For RD blends with either Edwards-Wilkinson of Kardar-Parisi-Zhang processes, we identify a nonuniversal parameter in the universal scaling in p.Comment: 4 pages, 6 figures, 11 references; under revie

    Synthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372

    Full text link
    A wide range of fatty acid esters can be synthesized by esterification and transesterification reactions catalyzed by lipases in non-aqueous systems. In the present study, immobilization of a purified alkaline extra-cellular lipase of Bacillus cereus MTCC 8372 by adsorption on diatomaceous earth (celite) for synthesis of ethyl acetate via transesterification route was investigated. B. cereus lipase was deposited on celite (77% protein binding efficiency) by direct binding from aqueous solution. Immobilized lipase was used to synthesis of ethyl acetate from vinyl acetate and ethanol in n -nonane. Various reaction conditions, such as biocatalyst concentration, substrates concentration, choices of solvents ( n -alkanes), incubation time, temperature, molecular sieves (3&Aring; &times; 1.5 mm), and water activity(a w ), were optimized. The immobilized lipase (25 mg/ml) was used to perform transesterification in n -alkane(s) that resulted in approximately 73.7 mM of ethyl acetate at 55 &deg;C in n -nonane under shaking (160 rpm) after 15 h, when vinyl acetate and ethanol were used in a equimolar ratio (100 mM each). Addition of molecular sieves (3&Aring; &times; 1.5 mm) as well as effect of water activity of saturated salt solutions (KI, KCl and KNO 3 ) to the transesterification efficiency has inhibitory effect. Batch operational stability tests indicated that immobilized lipase had retained 50% of its original catalytic activity after four consecutive batches of 15 h each.<br /

    Microbial lipases : at the interface of aqueous and non-aqueous media: a review

    Full text link
    In recent times, biotechnological applications of microbial lipases in synthesis of many organic molecules have rapidly increased in non-aqueous media. Microbial lipases are the working horses\u27 in biocatalysis and have been extensively studied when their exceptionally high stability in non-aqueous media has been discovered. Stability of lipases in organic solvents makes them commercially feasibile in the enzymatic esterification reactions. Their stability is affected by temperature, reaction medium, water concentration and by the biocatalyst\u27s preparation. An optimization process for ester synthesis from pilot scale to industrial scale in the reaction medium is discussed. The water released during the esterification process can be controlled over a wide range and has a profound effect on the activity of the lipases. Approaches to lipase catalysis like protein engineering, directed evolution and metagenome approach were studied. This review reports the recent development in the field of non-aqueous microbial lipase catalysis and factors controlling the esterification/transesterification processes in organic media

    Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC 8372

    Full text link
    A purified alkaline thermo-tolerant bacterial lipase from Bacillus cereus MTCC 8372 was immobilized on a Poly (MAc- co -DMA- cl -MBAm) hydrogel. The hydrogel showed approximately 94% binding capacity for lipase. The immobilized lipase (2.36 IU) was used to achieve esterification of myristic acid and isopropanol in n -heptane at 65 &deg;C under continuous shaking. The myristic acid and isopropanol when used at a concentration of 100 mM each in n -heptane resulted in formation of isopropyl myristate (66.0 &plusmn; 0.3 mM) in 15 h. The reaction temperature below or higher than 65&deg;C markedly reduced the formation of isopropyl myristate. Addition of a molecular sieve (3 &Aring; &times; 1.5 mm) to the reaction mixture drastically reduced the ester formation. The hydrogel bound lipase when repetitively used to perform esterification under optimized conditions resulted in 38.0 &plusmn; 0.2 mM isopropyl myristate after the 3 rd cycle of esterification.<br /
    corecore