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Abstract : BCC In-T1 alloy is chosen to study the effect of nucleation on its mechanical
stability in the framework of extended gencralised exponential potential by employing Born
stability criteria, which eventually leads to a phase transition from body-centered cubic (bcc) to
body-centered tetragonal (bcr) structure. The general procedure presented is independent of the
specific model of interatomic interactions which may be used in numerical calculations. In the
present study, a detailed numenical calculations are undertaken to compute the theoretical
strength and range of stability of a perfect uniaxially (100) stressed crystal lattice of bce In-Ti
alloy under homogeneous tension and compression. The study reveals that bee In-Tl alloy 1s
composed of two ranges of stability—one for body-centered cubic (bcc) phase and another for
body-centered-tetragonal (bct) phase At each stage of deformation, the second-order elastic
constants Cj; and Cj; are calculated. Although no specific experimental results related to
present study of strength and stability of bee In-Tl alloy are available in the literature, the
computed values of theoretical strength and strain of the alloy of present concern, hies well within
the general experimental Jimits.

Keywords : Nuclcanon, Born stability cnitena, In-Tl alloy

PACS No. ¢ 62.20.Dc

1. Introduction

The concept of nucleation is intimately related with the structural phase transition in the
crystalline solids. In fact, phase transitions in any system are caused by inducing nucleation
in its structure, by arbitrary homogeneous deformations under the application of external

© 1999 IACS


https://core.ac.uk/display/158963019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

654 M L Verma, A Verma and R P S Rathore

forces. The study is of interest because the values of stress and strain at which the
crystalline solid becomes mechanically unstable in terms of Born criteria [1] represents the
theoretical strength of the crystalline solid and hence an upper limit to the actual strength of

the solids.

Nucleation basically refers to directional non-identity of ionic separations, which
eventually alters the range of intervening forces under uniform deformations and results
into a change in the lattice structure, applied stress, internal energy and elastic constants of
the crystalline solid under consideration. The continued application of nucleation to a
system helps us to know the quantum of external force which the system can bear safely
and hence acts as a useful guide to check the stability of the material in question. The
deformations usually referred as twinning or nucleation [2] leading to structural transition
from tetragonal to orthorhombic phase have a direct bearing on the process of hot
superconductors [3]. The orthorhombic phase nucleates [4] along the grain boundaries and
then propagates into the interiers of the grains, which are initially tetragonal and hence non-
superconducting. The elastic properties of superconductors are also considerably affected
[5] on account of nucleation resulting into phase transition from tetragonal to orthorhombic
structure. The present study, however deals with the problem of theoretical strength and
stability of bcc In-Tl alloy under nucleation from cubic to tetragonal phase.

An alloy is composed of its metallic constituents and the response of its metallic
constituents i.e. ions and electrons subjected to the process of nucleation may be partly
linear and partly non-linear. The nature of electron behaviour calls for the inclusion of
anharmonic non-linear interactions in the alloy. The process of nucleation of cubic
structure, essentially invoking phase transitions, necessitates coherent changes in range,
strength, and nature of intervening bindings. An effective and appropriate potential
embodying the required non-linearity and desired width and depth is needed to explain

nucleation in bcc In-Tl alloy.

The previously developed extended generalised exponential potential (EGEP), being
amply capable of explaining static [6] and dynamic [7] behaviour of cubic metals, is further
employed to explain the elastic behaviour of simple bcc structures subjected to the process

of nucleation [8,9].

2. Theory
2.1. Extended generalised exponential potential :

The attractive as well as the rgpulsive components of the generalised exponential
potential [10] have been extended for representing their true and realistic nature. Extended
generalised form of exponential potential (EGEP) so developed assumes the form

@,,(ry) = Dfim=1) [y fiar, " ~ m(ar, )" e=v)- )
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The average interaction (cohesive cnergy) cnergy per atom within the frame-
work of EGEP is

@, (1) = D2(m=1) 3 [ fear) " — m(ar, e @] (2)
J

where m and n are the parameters which takes garc of electronic exchange and correlation
effccts and three-body forces such as volume 'forces n an alternative and simpler form
respectively, D is the dissociation energy, a the hardness parameter and r, the equilibrium
scparation parameter.

The details concerning the evaluation of the parameters of the potential arc
mentioned in our recent earlier paper [7]. The input data for bce In-Tl alloy studied and its
computed potential parameters arc given in Tables 1 and 2 respectively.

2.2. Theoretical considerations :

The necessary and sufficient conditions {11] for a lattice to be in stable equilibrium
under the effect of uniaxial stress in [100] direction in terms of Born stability criteria
takes the form

B, >0, By, >0, B,>0, By >0, 3)
AA = 822 - 823 > O, (4)
BB = B, (B,, + Byy) - 2(B;;)? > 0, )
J*E
= | 6
where B, l: 7a. 3",] (6)

and E is the energy per unit cell given by
E = (1/2) n'z o(r). )
Wl

i and j have their values ranging from | 10 6 and n” is the number of atoms per unit cell.
The parameters a;, a, and a5 stand for semi-lattice constants along the three edges of the
unit cell of the cube and ay, as and ag are the angles between a; and a3, a3 and a;, a; and a;
respectively. The normal stress acting on a face of the unit cell, when the cell edges are
perpendicular to each other is given by

1 _|eE]| )
Gy ()(II

The force F; acting on the crystal lattice in the direction a, is given by (i.e. uniaxial

[100] expansion or contraction)

L= |2E ©)
“ da, :

73A(5)-6
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and the force F, acting along a, is

GET_
Fz = [(9—02] =0, (1)

where for a tetragonal crystal lattice
a, =a, and a, =as =ag = nf2. (n

The modulii B, embodied in egs. (3) to (5) are given by (with n” = 2 for bcc lattice)

= a? 21, (32)2 +(1/2)2l,2 (12)
Il
By = df 2 $ ot (1/2>le (13)
B, = 29 (14)
12 = 414y 125 2)2
Ll
By = ayay Y, B 3 2";2 (15)
Ll

where a, and a, stand for scmi-lattice constants and for a tetragonal crystal lattice

r=[12a + (3 +12)a3]"™ (16)

3. Computations

The behaviour of bcc In-Tl alloy is studied for (100) uniaxial tensile and compressive
stresseses. In order to compute the theoretical strength and stability, the condition of lattice
cquilibrium JEfda, = JE[/da, = JE[da; = 0 is satisfied at experimentally known
cquilibrium values of semi lattice constants @, = a, = a; = a®. Then the semi lattice
constant g, is given small increments and decrements such that symmetrical changes in a,
and aj satisfy dE/da, = JE[/da; = 0 at each stage of deformation in a,. The process of
iteration has been applied to carry out these computations and continued until one of the
stability conditions [eq. (3) to c¢q. (5)] is violated. The value of F,f / (azf )2 at which the
instability occurs is the theoretical strength (stress) of the crystal and (a/ - af )/a° is the
theoretical maximal strain, where frefers to the final stage at which instability occurs.

For a tensile force, the edge a; will elongate and the edges a; and a; will contract
such that a; = a3 and a4 = as = ag = f2. Then, the deformed lattice of the alloy will possess
“tetragonal symmetry” on violating the condition defined by eq. (5) and bcc In-T] alloy is
then said to have transformed into bctphase, as a result of the nucleation of its latticc.
Similarly, for a compressive force, the reverse will be the effect of nucleation when ¢q. (4)
is violated. At each stage of deformation, the numerical values of the modulii B;;, applicd
stress and internal energy are calculated.
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4. Results and discussion
A close survey of the literature reveals that :

(i) a wide variety of materials (both métals and alloys) have not been studied
experimentally to determine their mechanical strength and stability under different
modes of failure. :

(ii) a sufficient number of theoretical investigations of strength and stability have not
been carried out in different modes of applied stress.

(iif) a variety of metallic whiskers have exhibited maximum stresses in the range of
about 0.17 E + 10 N/m? (for Ag) to about 1.31 E + 10 N/m? (for Fe) with a
corresponding strains estimated to be about 3% to 5% [12,13].

Therefore. a dctailed quantitative comparison between the theoretical and
experimental behaviour in a particular failure mode is difficult to made. Even though, the
effect of nucleation is manifested in the form of phase transition from bcc to bct structure
under Born stability criteria.

The instability in compression and in tension for the bcc lattice of In-T1 alloy results
from the violation of the conditions defined by eq. (4) and eq. (5) respectively.

The bct lattice of In-T1 alloy fails in compression by violating the condition defined
by eq. (5) as a result of its inability to support an additional compressive load, while in
tension by violating the condition By; > O wherein the angle a4 (the angle between a; and
a;) deviates from 90°.

We now discuss below our findings for bcc and bet phases of In-Tl alloy in the
framework of extended generalised exponential potential, concerning the modulii B,,
applied stress and internal energy.

0 — |

50

40

goeeevTessen,

5 L e
10 “.‘*M b e
> -
R .__.._..‘._‘L..‘———A'.‘_—___.
0 R Y

Il i I P B L I .
' l ‘ ) I 3 s 2471 2683 284 3237
y 1 7 135 208 2168 228 2398 2
Lo 1743 185 Lo Semi—latuce constant ay . Al

i 911 - En

Figure 1. Variation of By and B23 as a function of semi-lattice constant for In-Ti alloy.
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Figures 1 and 2 show the variation of Bj; as a function of semi lattice constant a; for
In-Ti alloy. Figure 3 shows the variation of AA = (B;; - By;) and BB = [B,,(By, + By;) -
2B}%] as a function of semi latice constant a, for the alloy of present concern.
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Figure 2. Variation of By and B} as a function of semi-lattice constant for In-T} alloy.
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Figure 3. Variation of AA and BB as a function of semi-lattice constant for In-T1 alloy.

Figure 4 shows the variation of applied stress and internal energy of In-T1 alloy as a
function of semi lattice constant ay. It follows from Figures 3 and 4 that bcc lattice of In-TI
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alloy becomes unstable at a theroretical tensile stress of 0.14262 E + 08 N/m? and a
corresponding strain of 0.75% when BB < 0 and in compression, the bec lattice of
In-T1 alloy becomes unstable at an applied stress of -0.15582 E + 08 N/m? with a strain
of 0.6% when AA <0 for n =3, m = 1.5 and ogy = 2.2471. Thus the range of stability
of In-Tl alloy is from a; = 1.904106 A, a, = 1.921273 A to a; = 1.929967 A, a; =
1.908503 A. :
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Figure 4. Variation of internal energy and applied stress as a function of semi-
lattice constant for In-Tl alloy.

It follows from Figure 4 that the theoretical strength of bct phase of In-Tl
alloy is 5.49975 E + 09 N/m? in tension when B,; < 0 and -1.37057 E + 09 N/m? in

compression when eq. (5) is violated; the corresponding strains being 10.376% in

tension and —6.758% in compression. The bct phase of In-T1 alloy is stable within the

range of semi lattice constants @, = 2.241252 A, a, = 1.761274 A t0 a, = 2.653106 A,

a, = 1.650335 A.
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5. Conclusions

The following main conclusions emerges on the basis of our investigations carried out for
bcc In-T1 alloy :

(i) The variation of internal energy defined by eq. (7) with semi lattice constant a, for
the bee In-T1 alloy under study shows two distinct minima, one for bec phase (where
stress 07 becomes negative) and the other for bct phase (where stress 0 = 0). It is to
be noted that the internal energy minimum (IEM) of the bct phase is considerably
lower than that of the bcc phase. The unstressed (0; = 0) bct phase possesses the
semi lattice constant a, = b and a, = b? corresponding to the minimum of internal
energy. The values of semi lattice constants a,, a, and the corresponding values of
the energy minima for the bcc and bct phases of the alloy studied arc given in
Table 3.

Table 1. Input data for bcc In-T! alloy after [15].

Composition Temperature Semi-lattice Bulk modulus
(at. % TI) °K) constant x 10710 m x 10" N/m?
76.5 300 1 9156 0.338

Table 2. Computed potential paramcters for bee In-Ti alloy

nom  oug ax10¥m! Bx 10%° Dx1073%) %10 m

3 15 22471 1.173053 1.211624 8.311329 1.782974

Table 3. Internal energy minima (IEM) and stress of In-T1 alloy.

(a) bee phase
a; A a A Minima position Stress
10719 Jyunit cell 1098 N/m?
1.953912 1.896633 —6.49731 -0.09468
(b) bet phase
a = bPA a = A Minima position Stress
10719 J/unit cell 10° Nim?
2..403695 1.704310 -6.54017 0.0

(ii) It follows from the analysis of our results mentioned in section 4 for the bcc alloy
studied that the range of stability of the bct phase is considerably greater than that of
the bcc phase.
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(iii) The second-order elastic constants (Table 4) C;, and C,, are calculated as per

Milstein [10] at the stress-free equilibrium value of semi lattice constant and at
failure in tension and compression values of semi lattice constant. It is observed that
the values of elastic constants (Cy; and C,)} decreases in tension but in compression,
the value of Cy; increases while that of C\,'first increases and then decreases due to
the effect of nucleation for bcc phase. ‘ut for bet phase, the values of elastic
constants decreases in tension while increaﬁcs in compression.

Table 4. Computed values of Cy; and Cj, fos In-T! alloy n 1010 N/m?

(a) bee phase
Cyy Ci2 Remark
343283 3.34623 At cquilibnum
3.28148 3.34229 At failure 10 tension
3.56988 3.34779 At failure 1n compression
Expt. 3.611 3.267 [15)
(b) bet phase
2.18287 209222 At equilibrium
1.41262 1 05903 At failure 1n tension
2.44737 2.75515 At failure 1n compression

(iv) The nature of the Figures 1 to 4 representing the variation of the moduli B,, the

conditions defined by egs. (4) and (5) and internal energy and applicd stress
defined by egs. (7) and (8) with respect to semi-lattice constant a; show the non-
linear behaviour of these properties under nucleation. The non-linear behaviour of
said properties may be attributed in general to the anharmonic nature of the
interactions involved, which have bcen embodied in the present potential

implicitly [14].
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