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Abstract : A model in real space has been developed by extending the gcncrali/x*d form of the exponential potential known as extended 
gi'iicialized exponential potential (EGEP) to account for <a) the correct nature o f lepulsive and attractive components of forces for all the separations 
m gcncial and that of small separations in particular, (b) the three-body forces such as volume foices in an indirect way in the framework of EGEP 
through the parameter /i, (c) the dielectric screening function.s in an alternative and simpler form through the parameter m The model is employed 
to compute the cohesive energy, second-order clastic constants and phenon spectra for fee platinum. The predictions show promising agreement with 
tApciimental findings
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1. Introduction

Platinum (Z = 78) is a silvery white transition metal o f  VIII group 
in VI period with an outer electronic configuration o f 5d^ 6 s and 
shows high catalytic activity. Platinum is highly malleable and 
ductile element with high melting point, high boiling point and 
high density. Platinum being a transition element shows a variable 
valency o f two and four.

Needless to say, the phonon spectra play a pivotal role in 
determining the mechanical, electrical and thermodynamical 
properties o f elements and their alloys. We have therefore, been 
motivated to study the co h es io n , c la stic  and vibrational 
behaviour o f fee platinum with a renewed interest because o f  its 
above stated attractive properties.

The cohesion in metals has earlier been studied by many 
Workers [1] follow ing different approaches and using widely 
different approximations. Moriarty [2J has em ployed several 
approximations to compute the cohesive energy o f twenty two 
metals using a sim plified local-density theory. C les [3] has
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analysed the role o f correlation effects in the cohesion o f  
transition metals. Sethi e t  a l  [4] have employed their theory to 
compute cohesive energy o f  som e cubic metals. Cheliskowsky 
[5 ] has determined the cohesive energy o f twenty simple metals 
from atom ic kinetic en erg ies. The gen eralized  gradient 
approximation has been employed by Asada and Terakura [6 J to 
compute the cohesive and magnetic properties o f bcc, fee and 
hep iron. The uniform electron gas model for transition metals 
has recently been employed by Rose and Shore |7 | to calculate 
the cohesive energy o f  M ,  A d  and 5 d  series o f transition metals. 
In the light o f  widely different approaches adopted to explain 
cohesion in metals, we have employed the present model (EGEP) 
which involves the least approxim ations and em ploys the 
minimum number o f input parameters to predict the cohesion in 
metals with remarkable success [8 ].

The importance o f  the study o f  elastic constants lies in the 
fact that they give information about the nautre of the binding 
forces in solids, account for their thermodynamic behaviour 
and leads to the determination o f the interatomic force constants 
o f the metals. An exercise to com pute the elastic constants has 
been undertaken from this point o f  view.
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Earlien the dynamical behaviour o f platinum has been studied 
by many workers using different approaches. These studies 
involve first principle |9 ,10] as well as phenomenological [ 11-
13] calculations. The former calculations suffer from physical 
intractability, mathematical lediousness, conceptual obscurity 
and resort to various approxim ations to arrive at useful 
conclusions whereas the later suffers from various shortcomings 
such as lattice instability, combination o f short range ion-ion 
interactions with long range electron-ion interactions in an abrupt 
manner and use o f large number o f  force constants, which varies 
from metal to metal and from model to model. Fielek f 14] model 
has been employed by Singh c t  a l  [15] for lattice dynamical 
study o f  platinum. Agrawal and Rathore [ 16] have employed a 
non-central F ielek model to study the lattice vibrations in 
platinum, considering the equilibrium of the lattice under the 
combined effect o f  the volume- dependent energy o f ions, the 
f/“Shell electrons and the conduction electrons. The study f l 6 ] 
makes use o f elastic constants and zone boundary frequency, 
thereby introducing relative standard error. Kulshrestha and 
Upadhyaya |17] have computed phonon dispersion curves o f  
platinum using transition metal model potential (TMMP) in local 
approximation with the model parameters o f Animalu [18] and 
the dielectric function o f Hubbard modified by Sham [ 19]. In the 
local approximation, the dispersion results obtained, differ widely 
from experimental data. The author [17] themselves improved 
the results by including non-local effects in the schem e o f  
Eschrig and Wonn [20|. Singh e t  a l  [211 have em ployed their 
isotropic non-intcracting band model to calculate dielectric 
screening and phonon frequencies o f palladium, platinum and 
vanadium using number o f parameters. Prakash and Upadhyaya 
[2 2 ] have incorporated the effect o f  many body forces to study 
the dynamical behaviour o f platinum using their [23] three-body 
potential which helps in improving the transverse branch of 
dispersion curves.

The outer electronic configuration of platinum 5cP 6s 
.suggests that the electrons occupying the ^-shells overlap with 
the immediate environment leading to 5-rf hybridization, which 
causes non-sphericity in charge distribution and hence calls for 
unpaired or three-body forces as pointed out by Bertoni e t  a l  

[24J and recently by Verma e t a l  [25]. Although several theories 
[26] have been put forward for providing much insight into the 
relative role played by the s- and ̂ f-like electrons in the bonding 
of the transition, but many of the details of the complex band 
structure are inessential to the understanding of the cohesive 
properties. Will and Harrison [27] have given a qualitative first 
principle analysis of the elastic and bonding properties of the 
transition metals, by computing their total energy as a function 
of volume and ionic configuration at constant volume, just by 
extending the nearly free electron theory of metals to include 
the effect of transition metal ^/-bands. A real space analysis of 
elastic and dynamical properties of transition metals have 
recently been investigated by Singh e t  a/l28] by means of their 
temperature-dependent, exponentially-damped two-body

interaction potential which com bines rational dielectric funciion 
(RD F) and H eine-A barenkov (H A ) m odel potential The 
com putations [27 ,28] being tedious and com plex, require 
enormous time, m oney and efforts.

T he p resen t co m m u n ic a tio n  d e r iv e s  an empincai 
macroscopic potential in real space, which is an extension oi the 
generalized exponential potential [29], known as extended 
generalized exponential potential (EGEP) and explains almsoi ai! 
the characteristic features o f  the interatomic interactions as 
detailed recently [30]. The present paper aims to investigate 
cohesion, the elastic and dynamical behaviour o f  fee piahnum

2. Theory

2. /  E x te n d e d  g e n e r a l i z e d  e x p o n e n t ia l  p o t e n t i a l :

The extended  gen era lized  exp on en tia l potential (KGLP 
representing the true and realistic nature o f the repulsive as \ult 
as the attractive com ponents o f  the interactions assumes the 
fewm

where m  and n are the parameters which take care o f clcctmniL 
exchange and correlation effects and three-body forces such as 
volume forces in an alternative and simpler form respectively, /) 
is the dissociation energy, a  the hardness parameter and /„ is 
the equilibrium separation parameter and r is the di.stance ol 
they-lh atom from the origin given by

where /, (either even or odd) are the integers of the p<isitioi
co-ordinates such that

Eq. (1) can be put in the form to represent the cohcM'f 
energy at equilibrium semi-lattice constant (n^) as under

maâ L̂j

/.Ml

- m p i a a o r ' Z ^ y “ ‘̂ "'
W ,

(3)

(4)where P = exp(a Tq).

The three defining parameters (a . and D) of the potential 
require for their evaluation, the precisely determined input data 
of equilibrium semilattice constant (Op) and bulk modulus (B) nt
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ihe metal only. For evaluating the three parameters a , and D  
of the potential function, the condition [31J

' 2 [ l f d 0 { r ) / d r ^ ] ^ ^
(5)

fur the equilibrium o f the crystal in the absence o f external forces 
IS employed which gives

P m-1 m(Offln)" ( P - 6 )  
( a « o ) ‘ " ( f f  +  5 )  ’

where

P  =

Q

R =

«  ' e x p i - a a ^ L j )

(« /«o) ^  exp(-aaotL ^)
'.'2^

m a ^ l f  L /" ' ‘' e x p ( -m a a „ L j )

e x p (-H ia a o /.j )

riie bulk modulus can be expressed as 

B ^ [ r - j w ) ( d ‘ 0 l d r - )  _ ^ . (7)

D = 1 8 V /B (m - l) / (A '-y ) , (8)

where

P "\a  Oq ) ” \{ma Uq )̂  LT/" exp(~ma OqLj )
[ W ,

+ 2n ( m a a 0) e x p (-m a  ) + n(« + 1 )
li'A

^  L]" t x p ( - m a  a o L j ) \
W,  J

y = [mP(a oq )" I (a  flo f  S  exp(-a Oo ) 
I V2'2

- 2 «(a flo ) L|,"*‘̂ cxp(-of«„/.^ ) + / i ( / i - l )
V>'.-

X  /" exp (-a«„Z > j)

2.2 The s e c o n d - o r d e r  e la s t ic  c o n s ta n ts  :

(5 ) The following expressions for the second-order elastic constants 
(90B C ) with present interatomic interactions are used 131]:

C„ = ^ { n ' a * / 2 V )  d ~  d > { r ) l ( d r - ) -

C |i ~ [ n '  U i J l v )  ^ l { l l d ~  d > (r ) l id r~ )~  ,

(9)

( 10)

where n' is the numbci of atoms per unit cell (4 for fee and 2 for 
bcc) and V represents the atomic volume.

The value of SOEC for the metal under study has been 
computed by expanding the secular equation is the long wave 
limits ( r / - > 0 ) and the comparing with the usual Chnstoffel 
relation,

2 3  iM tt ic e  dynam ica l b eh av iou r :

The elements o f the dynamical matrix having explicit bearing on 
eq.( 1 ) in case o f fee platinum, are :

=  2 (a , + / i ,) [ 2  -  C„(C,, + C\ )]4 4 « ,  ( 1  - C ),C \  )

The parameter D  can be evaluated through the expression 
toi the bulk modulus following the condition given by eq. (5) 
toi stress-free lattice. The fo llow in g  expression  for D is
uhiained :

4P 2SI + 4 a 2 [ s j + S ^ y  

Z ) 3 ( g ) - 2 ( / 3 , - a , ) i „ 5 p .

( 1 1 )

( 12)

where

S„ -  sm (f/r/„/2) and C„ -  cos(</r/„ / 2 ). (13)

t t ,  ^ [ U  r { d 0 / d r ) ] ^ ,  or, = [ l  / •  d-^)

P, =[d^^0/ dr~]^.  / 3 3 = [ ,9 * < p /^ r - ]
Jn/v (15)

l̂(x ^  “ component of phonon wave vector q ,  a is the

lattice parameter and or,, )8 , are the force constants for the first 
neighbour (AO and a 2 » / ^ 2  these for the second nearest 
neighbour (N N )  respectively.

The phonon frequencies ( u )  are obtained by solving the 
usual secular equation i.e.

(16)

where /  is the unit matrix o f 3 x  3 order and M  is the mass of the 
atom.
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3 .  Computations and results

The input data for the fee platinum (Pt) i.e. the lattice constant 
and bulk modulus are given in Table 1, while the computed 
potential parameters are recorded in Table 2. The present study 
considers the 248 atoms extending to 12th neighbours in case 
o f  fee platinum to eompute potential parameters. The computed 
values o f  cohesive energy and second-order elastic constants 
are shown in Tables 3 and 4  respectively. Table 5 enlists the 
evaluated derivatives ap O ti for fee platinum. Figure

Table 1. Input data for fee platinum (Ref 34]

Metal Lattice
10

constant
m

Bulk modulus 
10“ N/m-

Pi 3 92 2 783

Table 2. Computed potential parameters of platinum

n m a p DxIO-^'J FyX 10'®m

0.5 2.0 3 .10466 1.584010 415.6055 11.160770 3 806628

I.O 2.0 3 .13644 1.600225 1794 5240 1.092589 4.682153

2.0 2.0 3.23935 1.652730 40802 .6000 0 009026 6 423617

3 .0 2.0 3 35498 1 71 1751 1172507 0000 5 68E-05 S 164080

4 .0 2 .0 3.42325 1.746556 3.65E+07 2 92E-07 9 .976552

3. Computed values of cohesive energy of Pt [eq (3)| in eV/atomTable

n m Cohesive energy Magnitudes of 
cohesive energy

repulsive
part

attractive
part

comp exp.
134]

0 .5 2 .0 5 3708 11 2108 5 8400

I.O 2.0 4 2207 10,0606 5 8399

2 .0 2.0 2.8345 8 6753 5 8390 5 84

3.0 2.0 2 0843 7.9243 5.8400

4 ,0 2.0 1 6645 7 5043 5.8398

Tible 4. Computed second^ordcr elastic constants (in 10“ N/m^).

Metal n c„ c„ C„ Ref

Pt 0.5 2.0 3 .6403 2 3543 1.3353

1.0 2 .0 3.6568 2.3461 1.3276

2.0 2.0 3.6935 2.3278 1 3094

3 .0 2.0 3 .7350 2 .3069 1.2819

4 .0 2.0 3 .7830 2.2829 1.2391

Exp. 3 .580 2.536 0 .774  35

Table 5. Computed force constants (N/m).

Metal n m 0̂ 2 p ,  p .

P i 3 .0  2 ,0 -3 .0 9 2 9 1 8  0 .5 7 2 0 6 1 2 57 .23967  -1 .3 7 8 5 4 5 0

1 depicts the computed phonon dispersion curves alongwuh 
the measured data o f  Dutton e t  a l  (32] for fee Pt.

4* C onclusions

The successful prediction o f  cohesive energy [eq. (3)] o f the 
Pi for any positive value o f  n effectively points to the eftieaiv 
o f the present potential (EGEP). Although the dissociation 
energy parameter (D) o f  the present potential appears as the 
consequence o f  the cohesive energy but the model parametas 
depend sparingly on the coh esive  energy because the saul 
parameters describe the mean average binding over a lai^e 
number o f neighbouring atoms.

- ....... -  q/On..

Figure 1. Phonon dispersion in fee platinum 
experimental findings of Dutton et al [32]

present study . O ▲

The extended form o f  the generalized exponential potential 

explains quantitatively the second-order elastic constants 

(SOEC) o f  fee platinum and their intimate relation with tin 

strength o f the metal further establishes the importance ol the 

present study. The study o f  the second-order elastic constants 

provides direct know ledge to the response o f  metallic ions to its 

environment and therefore, further reveals the nature of the 

resultant interactions.

The computed values o f  second-order elastic constants j 
and C 2̂ o f  fee platinum com pare reasonably well with the 
experimental values, but the computed value o f  override the 

experimental value as the contribution o f  attractive interactions 
in j 8 j , a j  and CZ2 predominates in their values calculated in  the 

long wave limit. The dominant values o f  , a ,  and based 
on reasonable nature o f  operative interactions which eventually 
enhances the value o f  determ ined by the slope of the 
dispersion curves occupying the proximity o f zone center. The 
strong attractive forces al zone center have also been exploited 
by the first p r in c ip le s  c a lc u la t io n s  as w e ll as by the 
phenomenological m odels.

The computed phonon frequencies o f  fee platinum [Figuie 
1 ] in the framework o f  extended generalized exponential potential 
agree satisfactorily with the experimental values o f  Dutton euil
[32] and that too by em ploying the minimum number o f inp̂ t̂ 
data, arc encouraging. The computed values slightly exceed the
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jjpcnmental values along (100 T) and f 110 Tj] except along the 
/(me boundaries, whereas the computed values fall short of the 
measured data along fill Tj the zone boundary. The results 
,ilong the transverse branches can be further improved by 
explicit inclusion of appropriate three-body forces and the 
liable electronic contribution in a more direct manner. Anyway, 
,,ur results are free from the relative standard error (16j, complex 
iormulation [22,23], various approximations |27,28) and these 
jaci enhances the reliability [33] of our model.
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