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Abstract

. The generalised cxponential potential 1s suitably extended to investigate the elasuc and the lattice dynamical hehaviour of bec

ntalum The role of three-body nteractions which couple d-shell of non-simple metals hke tantalum is taken into account in an indirect manner in
the tramework of extended generalised exponential potential (EGEP) through the parameter n The etfect of diclectne screening functions 1s included
mto the model in a more simpler form through the parameter m The model successfully predicts cohesive cnergy, sccond-order elastic constants and
phenon spectra of the bee tantalum and the predictions show good agreement with experimental findings.
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1. Introduction

[wo different approaches have widely been employed in the
study of the lattice dynamical behaviour of transition metals i.e
pseudopotential [ 1-3] and phenomenological [4-6] and form the
basis for the development of various models. The former studies
"1 1] involve huge computation and various simplifying
asumptions for discussing the crystal dynamics of non-simple
metals The later studies [4-6) of these metals ignore the
consideration of lattice stability or observe it extrancously and
cmploy a large number of input data to evaluate the parameters.
Inspite of this progress, the lattice dynamical bchaviour of non-
sunple metals remains to be a complex problem of immense
mierest because of the presence of d-shell and conduction
clecuons. Moreover, the first principle theories [7-9] cmployed
0 study the lattice dynamics of transition metals, make use of
varying approximations to arrive at useful conclusions and
'ercases computer time considerably. Khanna and Rathore [10]
have used modified and improved versions of Fielck model [11]
1o discuss the phonon dispersion in bee transition metals, which
makes use of the elastic constants and the zone boundary
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Extcnded generalised cxponential potential (EGEP), elastic constants, phonon

frequencics as input data. introducing rclative standard crror.
Recently, Singh er al [12] have proposed a temperature
dcpendent pair potential for the same purpose. which 1s basically
a Heine-Abarenkov (HA) potential and suffers from many
drawbacks.

Tantalum (Z = 73) 1s the third transition element of group V
in the bee phase with an outer clectronic configuration 652 5d°,
high melting point (3000°C) and exhibit variable valency. Also,
the density (d) of transition metals of group V increases
significantly from vanadium (d = 6.1 gm/ml) to niobium (d = 8.6
gm/ml), then to tantalum (d = 16.6 gm/ml). Further, because of
the lanthanide contraction, the covalent and the ionic radii of
Nb and Ta are almost identical with a value of 1.34A.
Consequently, these two elements have very similar properties,
occur together and are very difficult to separate. Vanadium forms
many different positive ions, but niobium and tantalum form
virtually nonc. Thus, though Nb and Ta arc mctals (highly
unreactive and resistant to acids execpt HF), their compounds
in the (+V) state are mostly covalent, volatile and readily
hydrolysed — properties associated with nonmetals. Finally, itis
worthwhile to mention that the vanadium is scldom used on its
own, but it is uscd in metal alloys and acts as an important
catalyst in oxidation reactions. Niobium is used in chromium
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nickel stainless steel. Because it is unreactive and 1s not rejected
by the human body, tantalum is used for making metal plates,
screws and wires for reparring badly fractured bones.

The electrons occupying the d-shells overlap with the
immediate environment leading to s-d hybridization which
causes non-sphericity 1n charge distribution. This non-sphericity
calls for unpaired or three -body forces, as pointed out by Bertoni
et al [13]. The s-d hybridization i transition metals has also
been explained on the basis of Ziman's resonance model [14] 10
the / = 2 phasc shift. The extended gencralised exponential
potential (EGEP) has earhicr explained successfully the
implications of hybridizaton in thorium [15] as well as in
vanadium and niobium [16] and capable to explain s-d
hybiidization in d-band metals, which requires a repulsive term
with exponential character in the interaction potential, as pointed
out by Monarty [ 1].

‘Therclore, the present communication proposes an empirical
potential rather than pscudopotential and phenomenological
approaches. This 15 an extension of the generahsed exponenual
potential, known as extended generalised exponential potential
(LGEP) and explains almost all the characteristic features [17] of
the mteratomic interactions and its physical basis rests on the
following facts .

(ra)  Mortarty [18] has shown that the multiparticle
unpaired teractions assume the attractive as well
as the repulsive characters.

(b)  The core and shell charge densities responsible for
the parred and unpaired interactions, have been
represented by the exponential forms | 19].

(1) Analyucal form of the pair potenual [20] adopts the
damped exponential character.

(id)  Generahsed pseudopotenual theory [21] also seeks
(v incorporate the d-shell interactions through

exponential form of the potenual.

(i) The broademing and shifung of centre of the bands
results into the suitable changes [22] in the attractive
and repulsive interactions.,

Hence, the above said meritorious features of the pseudo/
model potenual are properly formulated by suitably adjusting
the corresponding clements of the potental in the extended
form of gencralised exponential potential.

(i1) The formulation of the 10n-ion interaction cither n the
phenomenological approach or in the pseudopotenual scheme,
does not account for the influence of the clectron cxchange and
corrclation eflects. These effects which introduces the
substantial change [23] into the width and depth of the potential
by shifting the minima of the potenual vertically have been
accounted for, in an alternative form through a parameter m and
thercfore, properly substitutes for diclectric screening functions,
which either cnhances or reduces the Coulombian interaction in
an arbitrary fashion.
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(ii1) The role of the three-body forces (such as volume force,
[24]) responsible for shifting the minima of the Potenyy,
horizontally, has effectively been expressed in an indirect Mannpg
through a parameter n, as this parameter affects [25] the POsitigy
as well as the depth of the potential minima.

(iv) It accounts effectively for the characteristic feaiy,
steep risc of Coulombic repulsion at small separations.

]

(v) The extended generalised exponential potential ( EGlp,
possesses all the virtues [26] of a well-behaved potential tunctgg
including an emply core, smooth transition over the entire ange
and a well-defined minima.

(vi) The present form of potential is sclf-convergeny gy
therefore, requires no exponential damping factor.

Since a heavy metal like tantalum embodies covalent 1o o,
texture, the rclevant interactions are to be properly blended |,
reflect the transition smoothly. The pronounced role of the pag,
interactions have therefore been amalgamated with the dewy
infuston of the unpaired interactions in an indirect manp
through the parameter 2 in the main expression of the potenyy
The extended generalised exponenual potential (EGEP) accoun,
elfectively for the range, strength and nature of't
involved n the structure under study. |

Interacton.

The potenual has carlicr explained [26] successtully il
clastic and dynamical behaviour of fee metals The present pape
aims to investigate the clastic and dynamical behaviour of b,
tantalum.

2. Theory

2.1 Extended generalised exponential potential :

The attractive as well as the repulsive components of th
generalised exponential potential (27) have been extended
representing their true and realistic nature Extendced gencralisdd
form of exponential potential (EGEP) so developed assumes the
form

®,(r)=
D/2(m—I)Z[c""'""’_"” /(a8 ,)" —m(@8 )" c """
]

where m and n are the parameters which take care of clectionic
exchange and correlation effects and three-body forces such s
volume forces in an alternative and simpler form, 1) 1s the
dissociation energy, o the hardness parameter and /, h¢
cquilibrium separation parameter and r, is the distance ol the
J-thatom from the origin given by

12 n
(rj)=(l|2+122+13‘) ayg=L,a,. @
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Eq. (1) can be put in the form to represent the cohesive
energy at equilibrium semi-lattice constant (a,) as under

d)(ao) =D/2(m-1) pm(wo)-n Z L—;ne-maa“l.j
i,

n L L .
_”lﬂ(w()) ”21 L]e 0 ] (3)
where
B=explar). @

The three defining parameters (@, r, and D of the potential
require for their cvaluation the precisely determined input data
ol equilibrium semi-lattice constant (ag) and bulk modulus (B)
of the metal only. For evaluating the three parameters @, r, and
D ol the potential function, the condition

l%[l,ldcp(r)/drz] =0 -

jor the equilibrium of the crystal in the absence of cxternal forces
i employed which gives

-1 =_’£gw())" (P—O)
(@ag) " (R+S) ©

where

P=a Y I} L) exp(-aayL,)

Ly,

0= (n/ao)zl,2 L';‘Z exp (—aaylL,)

Lyl

R= ma 2!; LY exp (-maaplL,)
Wizl

S= (nlay) 21,2 L,"*? exp (-maaylL,)
lly

The bulk modulus can be cxpressed as

B=(r2 /9v)(dz¢/dr2) %)

r=rn

The parameter D can be evaluated through the expression
for the bulk modulus following the condition given by eq.(5) for
Mess-free lattice. The following expression of D is obtained

D=18VB(m-1)/(X -Y), ®

where

X= p"(oay)™" {(mcxao)2 2 L;""z) exp (-maagl,)
hish,

+2n(maag) Y L;" ™" exp (~-marayL,) +n(n+1)x
Ll

2 L;" exp (-mocayL, )]

Lisly

Y= mBlou,)" {(oruo)2 z L' exp (-aayl,)
il

=2n(aa,) Z L(,'” h exp (—agl)) +n(n—1)x
TN

ZL'; exp (—aayl, )]

11y

2.2 The second-order elastic constants :

The following cxpressions for the seccond-order elastic constants
(SOEC) with present interatomic interactions arc used [28]

C =(n’ a; /2V) Z i d*e(r)/ (dr?), )

Cio=(n ad 12v) Y 1} 3?0 1 dr?)’,

“~ (10)

where ;7 1s the number of atoms per unit cell (4 tor fec and 2 for
bee) and V represents the atomic volume.

The value of SOEC C,, for the metal under study, has been
computed by cxtending the sccular equation in long wave limts

(¢ = 0) and comparing with the usual Christoffel relation.

2.3 Lautice dynamical behaviour :

The clements of the dynamical matrix having explicit bearing on
eq. (1) may be written as

8
Dg,)(q)=;ﬂ|[|—CanC.,]+4ﬂ35§. (1m)
Dia@ =3By SuS4Cy - (12)
where
S, =sin(aqy [2), C, =cos(aq,/2), (13)
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p|=['72¢’3'2]Nv /32=[92¢/3’2]NN (14)
du is the @ = component of phonon wave vector ¢, a is the
lattice parameter, B, and 8, arc the force constants for the first
ncighbour (N) and the second nearest neighbour (NN)
respectively. It may be mentioned that the inclusion of the first
derivatives (e, a,) of the potential deteriorates the dispersion
curves 1n the alloys and metals beyond repairs. For this reason,
we have considered only the second derivauves (3, , f,) while
considening the two-body contribution towards the phonon
dispersion in bee metals

The phonon frequencies (v) are obtained by solving the
usual sccular equation ie.

I)uﬁ(q)~4”:,\'2M 1=0. (15)

where 718 the unit matrix of 3 x 3 order and M 1s the mass of the
atom.

2.4 Parameter evaluation :

Eq. (6) 1s treated repeatedly for a chosen value of n and m to
yicld a value of dimensionless quantity (eca,) which
reproduces such values of B and D [from eq. (8)] which on
subsequent substitution in eq. (3), yields exactly measured value
of cohesive energy. This proper value of @« 1s employed to
cvaluate a from the measured value of cquilibrium semi-lattice
constant. The value of r1s cvaluated using eq. (4)

3. Computations and results

A machine program was developed on the theoretical lines given
in the preceding section and the same was fed to the computer
to obtam the results given in Tables 2 to §.

Table 1. Input data for bee tantalum

Mcial L.attice constant bulk modulus
10" m 10" N/m?
Ta 13 20

The input data for bee tantalum (Ta) i.e. lattice constant and
bulk modulus are given in Table 1. For a given value ol parameter
n, we have computed potential parameters for four different
values of m (= 1.5, 2, 3, 6). However, duc to limntations ol the
space, we have shown our parameters in Table 2 only for the
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most suitable value of m. The present study considers the 3
atoms extending to 16-th neighbours to compute (heg,
parameters. The computed values of cohesive energy anq
second- order elastic constants are shown in Tables 3 anq 4
respectively. Table S enlists the evaluated derivatives B, gy
B, for bee tantalum (Ta). Figure 1 depicts the computed phongy,
dispcrsion curves alongwith the measured data of Woods (29)
for bee Ta.

Table 3. Computed values of cohesive energy |eq (3)] in eV/alom

Mectal n m Cohesive encrgy Magnitude n? -
cohesive cnerpy
repulsive  attractive comp. exp
part part
Ta (U 6.0 2.9018 110018 8 1000
10 6.0 2.3771 10.4770 8 0999
20 60 1 6044 9 7042 8.0998
30 60 1.0984 9 1984 8 1000
40 6.0 07711 88710 8 0999

Table 4. Computed sccond-order clastic constants (in 10} N/m’)

Metal n m C, C. C Rel
Ta 0s 60 21761 1.9029  0.8894

10 60 21862 1 8982 0 858Y

20 60 21971 1 8943 ORIB4

30 60 21969 I KYSE 0 7989

40 60 21963 I 8974 0 7888
Exp 2 609 1574 0RYY 135

Table §. Computed force constants for bee Tantalum (N/m)

Meital B B

Ta 0Ss 60 §7.17932 12 35096

4. Conclusions

The empirical nature of the potential is estabhished by successiul
prediction of cohesive cnergy of the bee tantalum for any
positive value of n, which in turn, explains all the qualitauve
fcatures of phonon dispersion relations and therefore
effectively supports the efficacy of present interactions coupling
the metallic ions.

The intimate relation of second-order elastic constants with
the strength and stability [30] of the mctal further establishes

Table 2. Computed potenual parameters for bee tantalum,

Metal n m ua, a x 10" m! B Dx10] r,x 10" m
Ta 05 60 088598 0536976 76797 29.813030 3796537
10 60 090083 0.545957 8.9367 14.662160 4011614
20 60 095435 0578294 13 1758 3.029311 4457827
30 60 1.03913 0629776 22.1478 0.486622 4918793
40 60 1.14874 0696206 42.4454 0059276 5.383779
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jhc importance of the present study. The study on the second-
order clastic constants provides direct knowledge to the
esponse Of metallic ions to its environment, nature of the binding
jorces 1N solids and therefore, further reveals the nature of the
wsultant interactions. The computed values of the second-order
Jastic constants compare reasonably well with the available
expen mental values.
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pigure 1. Phonon dispersion 1n bce tantalum _
apetimental findings of Woods [29]

_ Present Study, o, 0

A close scrutiny of the literature reveals that the phonon
dispersion curves in bee transition metals are notoriously full of
ammalies [31], but these anomalics have been accounted for in
atislactory way [32] to some extent. Previous attempts to
Jevise potentials have met with limited success [33] and it is not
wrptising o find discrepancies as high as 100% between the
wmputed and experimental phonon frequencies in the literature.

fizh suuctural density and low degree of hybridization of the
aietgy Jevels due to increase 1n the atomic size causing sofiness
althe orbitals from vanadium (o tantalum, tends to'narrow down
(e phonon dispersional anisotropy at large wave vectors along
i110L] and [110T] dircctions. The optimisation of the model
parameters m and n in a coherent and composite manner, may
awhieve the said narrow-down. Even then, a comparison of the
owperimental [29] and the presently computed phonon
tequencies in the framework of EGEP using minimum number of
wput data are encouraging. The computed phonon frequencics
win be further improved by explicit inclusion of appropriate
three-body forces and the suitable electronic contribution in a
more dircet manner. Anyway, our results are free from the relative
vandard crror and this fact enhances the reliability [34] of our

model
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