388 research outputs found

    Melodic track identification in MIDI files considering the imbalanced context

    Get PDF
    In this paper, the problem of identifying the melodic track of a MIDI file in imbalanced scenarios is addressed. A polyphonic MIDI file is a digital score that consists of a set of tracks where usually only one of them contains the melody and the remaining tracks hold the accompaniment. This leads to a two-class imbalance problem that, unlike in previous work, is managed by over-sampling the melody class (the minority one) or by under-sampling the accompaniment class (the majority one) until both classes are the same size. Experimental results over three different music genres prove that learning from balanced training sets clearly provides better results than the standard classification proces

    On the suitability of combining feature selection and resampling to manage data complexity

    Get PDF
    The effectiveness of a learning task depends on data com- plexity (class overlap, class imbalance, irrelevant features, etc.). When more than one complexity factor appears, two or more preprocessing techniques should be applied. Nevertheless, no much effort has been de- voted to investigate the importance of the order in which they can be used. This paper focuses on the joint use of feature reduction and bal- ancing techniques, and studies which could be the application order that leads to the best classification results. This analysis was made on a spe- cific problem whose aim was to identify the melodic track given a MIDI file. Several experiments were performed from different imbalanced 38- dimensional training sets with many more accompaniment tracks than melodic tracks, and where features were aggregated without any correla- tion study. Results showed that the most effective combination was the ordered use of resampling and feature reduction techniques

    Shallow vs deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis

    Get PDF
    In this work, we present a comparison of a shallow and a deep learning architecture for the automated segmentation of white matter lesions in MR images of multiple sclerosis patients. In particular, we train and test both methods on early stage disease patients, to verify their performance in challenging conditions, more similar to a clinical setting than what is typically provided in multiple sclerosis segmentation challenges. Furthermore, we evaluate a prototype naive combination of the two methods, which refines the final segmentation. All methods were trained on 32 patients, and the evaluation was performed on a pure test set of 73 cases. Results show low lesion-wise false positives (30%) for the deep learning architecture, whereas the shallow architecture yields the best Dice coefficient (63%) and volume difference (19%). Combining both shallow and deep architectures further improves the lesion-wise metrics (69% and 26% lesion-wise true and false positive rate, respectively).Comment: Accepted to the MICCAI 2018 Brain Lesion (BrainLes) worksho

    Handwritten digit recognition by bio-inspired hierarchical networks

    Full text link
    The human brain processes information showing learning and prediction abilities but the underlying neuronal mechanisms still remain unknown. Recently, many studies prove that neuronal networks are able of both generalizations and associations of sensory inputs. In this paper, following a set of neurophysiological evidences, we propose a learning framework with a strong biological plausibility that mimics prominent functions of cortical circuitries. We developed the Inductive Conceptual Network (ICN), that is a hierarchical bio-inspired network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes. The outputs of the top-most node of ICN hierarchy, representing the highest input generalization, allow for automatic classification of inputs. We found that the ICN clusterized MNIST images with an error of 5.73% and USPS images with an error of 12.56%

    Data-driven train set crash dynamics simulation

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis GroupTraditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force–displacement curves and predicts a force–displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency

    Parameterizing neural networks for disease classification

    Get PDF
    Neural networks are one option to implement decision support systems for health care applications. In this paper, we identify optimal settings of neural networks for medical diagnoses: The study involves the application of supervised machine learning using an artificial neural network to distinguish between gout and leukaemia patients. With the objective to improve the base accuracy (calculated from the initial set-up of the neural network model), several enhancements are analysed, such as the use of hyperbolic tangent activation function instead of the sigmoid function, the use of two hidden layers instead of one, and transforming the measurements with linear regression to obtain a smoothened data set. Another setting we study is the impact on the accuracy when using a data set of reduced size but with higher data quality. We also discuss the tradeoff between accuracy and runtime efficiency

    Classification of Neuroblastoma Histopathological Images Using Machine Learning

    Full text link
    Neuroblastoma is the most common cancer in young children accounting for over 15% of deaths in children due to cancer. Identification of the class of neuroblastoma is dependent on histopathological classification performed by pathologists which are considered the gold standard. However, due to the heterogeneous nature of neuroblast tumours, the human eye can miss critical visual features in histopathology. Hence, the use of computer-based models can assist pathologists in classification through mathematical analysis. There is no publicly available dataset containing neuroblastoma histopathological images. So, this study uses dataset gathered from The Tumour Bank at Kids Research at The Children’s Hospital at Westmead, which has been used in previous research. Previous work on this dataset has shown maximum accuracy of 84%. One main issue that previous research fails to address is the class imbalance problem that exists in the dataset as one class represents over 50% of the samples. This study explores a range of feature extraction and data undersampling and over-sampling techniques to improve classification accuracy. Using these methods, this study was able to achieve accuracy of over 90% in the dataset. Moreover, significant improvements observed in this study were in the minority classes where previous work failed to achieve high level of classification accuracy. In doing so, this study shows importance of effective management of available data for any application of machine learning

    Rapid Diagnostic Algorithms as a Screening Tool for Tuberculosis: An Assessor Blinded Cross-Sectional Study

    Get PDF
    Background: A major obstacle to effectively treat and control tuberculosis is the absence of an accurate, rapid, and low-cost diagnostic tool. A new approach for the screening of patients for tuberculosis is the use of rapid diagnostic classification algorithms. Methods: We tested a previously published diagnostic algorithm based on four biomarkers as a screening tool for tuberculosis in a Central European patient population using an assessor-blinded cross-sectional study design. In addition, we developed an improved diagnostic classification algorithm based on a study population at a tertiary hospital in Vienna, Austria, by supervised computational statistics. Results: The diagnostic accuracy of the previously published diagnostic algorithm for our patient population consisting of 206 patients was 54% (CI: 47%–61%). An improved model was constructed using inflammation parameters and clinical information. A diagnostic accuracy of 86% (CI: 80%–90%) was demonstrated by 10-fold cross validation. An alternative model relying solely on clinical parameters exhibited a diagnostic accuracy of 85% (CI: 79%–89%). Conclusion: Here we show that a rapid diagnostic algorithm based on clinical parameters is only slightly improved by inclusion of inflammation markers in our cohort. Our results also emphasize the need for validation of new diagnostic algorithms in different settings and patient populations
    • 

    corecore