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Abstract. Representation or embedding based machine learning models, such as
language models or convolutional neural networks have shown great potential for
improved performance. However, for complex models on large datasets training
time can be extensive, approaching weeks, which is often infeasible in practice.
In this work, we present a method to reduce training time substantially by select-
ing training instances that provide relevant information for training. Selection is
based on the similarity of the learned representations over input instances, thus
allowing for learning a non-trivial weighting scheme from multi-dimensional rep-
resentations. We demonstrate the efficiency and effectivity of our approach in
several text classification tasks using recursive neural networks. Our experiments
show that by removing approximately one fifth of the training data the objective
function converges up to six times faster without sacrificing accuracy.

Keywords: Selective Training, Machine Learning, Neural Network, Recursive
Models

1 Introduction

Recent years have seen substantial performance improvements in machine learning for
deep models in a variety of application domains [10]. However, training times for deep
models can easily be in the order of days [27] or even weeks [3]. Being able to effi-
ciently train and evaluate new models is important in order to preserve our ability to
investigate and develop better machine learning models. Thus, training effort may be
a critical factor in the deployment and advancement of more powerful, expressive ma-
chine learning models. This is certainly true for deep neural network models where the
quest for stronger and better neural models drives doubling of models sizes (number of
neurons) approximately every 2.4 years [10].

In this work, we present Selective Training, an effective training strategy for artifi-
cial neural network models. In a nutshell, by focusing on instances with relevant infor-
mation for training, our approach requires fewer training iterations to converge to a sta-
ble and effective model. Selective Training adjusts training based on multi-dimensional
representations of what the network has learned. It can be used with different training
methodologies such as standard backpropagation or adaptive training approaches like
Adam where the learning rate is adjusted depending on the loss gradient [14].
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In this paper we focus on the deep structured gradient backpropagation training ap-
proach, backpropagation-through-structure (BPTS) [12, 9] for text classification tasks
with high training times, where we observe substantial improvements in training time.
Still, our results are not limited to this application, but generalize to classifier models
which generate distributed instance representations. We demonstrate in our empirical
study on several document datasets that the gains in training time do not come at the
cost of accuracy, but may even bring a slight improved accuracy score4.

Our method identifies obsolete training samples through clustering in representation
space. The cluster approach makes it possible to select those parts of the training data
that matter for training, and to focus on these in order to reduce training time. This is in
contrast to approaches such as instance selection [25] or active learning [28] where the
goal is to find the minimum representative instances (or equivalently instance lookups).
This difference in goals leads to two major methodological differences; 1) We remove
entire clusters rather than instances and 2) we work on embedded representations rather
than on instance features. A major challenge for instance selection as reported in [25]
is the need for comparing new instances to all previously selected instances. This costly
comparison is is a challenge for scale-up, that our method does not suffer from. Cluster-
ing into relatively few clusters is sufficient and efficient, and can even be further scaled
up using sub-sampling or hierarchical approaches [2].

Our contributions include a selection strategy for training with substantial speed
up while still maintaining high model accuracy, an empirical study on four real world
datasets that demonstrates the effectiveness and efficiency of our approach, robustness
with respect to parameterization, as well as a detailed error analysis.

2 Background

In the following, we study efficient training for complex deep models for text classifi-
cation, as a concrete instance of costly training problems in deep learning. In the text
classification, distributed word embeddings [1] have been immensely successful for a
wide range of tasks including sentiment analysis [31], POS-tagging [4] and text classifi-
cation [13]. Many approaches learn unsupervised word embeddings on large document
sets such as word2vec [23] and GloVe [26]. VecAvg proposed to define sentence em-
beddings as the average of all word embeddings in a given sentence [20]. VecAvg has
since been superseded by more expressive models such as recurrent neural networks
(RNN) using gated memory cells such as the LSTM [11].

A generalization of the recurrent model has been proposed in [30] as recursive neu-
ral networks (RecNN)5. RecNN models can incorporate semantic knowledge about the
sentence in a tree or graph like structure. To evaluate a RecNN a walk is required from
node to node through the entire tree. This may negatively impact performance, and the
walk may be hard to parallelize, therefore various restricted versions of the RecNN
have been proposed such as Hierarchical ConvNet [5] and Graph Convolutional Net-
works (GCN) [15] where the number of steps in the graph is restricted to a fixed con-

4 code https://bitbucket.alexandra.dk/projects/TAB, data https:
//dataverse.harvard.edu/dataverse/enron-w-trees

5 In this work we refer to recursive neural networks as RecNN to avoid name clash with RNNs.
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stant number. In our experimental study, we consider embeddings generated by the full
complexity of the RecNN model over the constituency parse trees as proposed in [29].
As we only assume embeddings, our approach can generally be applied to any text or
sentence embedding generating approach as well.

3 Problem Definition

Given a dataset D of n text documents D = {d1, d2, . . . , dn}, a ground-truth labeling
L : D → {1, 2, . . . C} with C classes, and label L(x) for x ∈ D, the goal is to train a
given modelm using as few training cycles as possible while maintainingm’s accuracy.
Model m is parametrized by a set of parameters θ ∈ Θ, where Θ denotes all possible
model parametrizations. The approach used to find a good model is referred to as the
learning approach, which we denote Tm. For example, Tm could be the application of
backpropagation on model m. Given (mini-)batches of b texts per cycle the learning
approach updates the set of parameters Tm : (Θ,Db) → Θ, i.e., given a parametrized
model mθ and a subset D′ ⊆ D of b texts the training function returns a new set of
parameters θ′: θ′ = Tm(θ,D′).

Efficiency of the training approach is then the expected number of random batches
of training text documents that needs to be processed by Tm before the performance
of the model mθ converges. That is, further batches do not bring mθ closer to L, as
indicated by an error measure, such as the squared error function (L(x)−mθ(x))

2.
We wish to minimize the objective function obj(mθ) =

1
|D|

∑
x∈D(L(x)−mθ(x))

2.
Given a threshold ε, model mθ′ as the model after training mθ on additional δ batches,
then we say that the model m has converged iff obj(mθ)− obj(mθ′) < ε , i.e., further
batches do not improve mθ. In this paper, we use the expected number of batches to
produce a converged model on the training dataset as a measure of the training time,
denoted t(Tm) or just tm for short. We define the training time optimization problem for
a dataset D with labeling function L, a model architecture m and training method Tm
as the minimization of t(Tm) under the constraint that model accuracy be preserved.

For embedding based approaches, a distributed representation of the input is learned
in order to predict the correct label. Thus, our model mθ can be split into a pre-
dictive part mp

θ and an embedding generating part me
θ as follows: mθ = mp

θm
e
θ.

In complex models, the embedding layer in fact typically consists of several layers
me
θ = mL

θ . . .m
2
θm

1
θ. For our method, we only use the most informative embedding

which is the final embedding produced just before a prediction is made. Evaluating
model mθ on training instance x yields mθ(x) = mp

θm
e
θ(x). We refer to the output of

the embedding layer as a representation of x: repr(x) = me
θ(x).

The key idea in this work is to exploit this representation as a means to identify a
subset of the training instances that does not contain information for training. Excluding
it from further training reduces training time t(Tm) while not hurting accuracy.

4 Our Approach

To minimize the number of training cycles t(Tm), our goal is to select the most in-
formative training samples. Given a model mθ and input x, we extract representations
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repr(x) of what the model has learned about the input x. In a deep neural network, this
generally is the second last layer before the final prediction layer.

If the model has learned to differentiate between two inputs x and x′ with different
labels L(x) 6= L(x′), then their representations should differ as well. If the repre-
sentations were similar then it would be challenging for the model prediction layer to
distinguish between the two representations. We observe that the structure of the rep-
resentation space allows us to select training instances of interest, namely groups of
instances with different labels in close vicinity in representation space, as those have
not yet been properly differentiated with respect to their labels. Clearly, training on in-
stances with similar representations and identical label provides less information for
learning to distinguish between classes.

We therefore pose the problem of finding subsets of interesting training samples as a
clustering problem. While any hard clustering method could be used, we use the well es-
tablished K-means [21, 7, 2] as a simple and efficient choice. In brief, K-means assigns
representations into k clusters such that the total sum (TS) ofL2 distances between clus-
ter centroid and cluster members is minimized: TS =

∑
xi∈D ‖repr(xi)− cj(xi)‖

2,
where cj(xi) is the centroid of the cluster that input xi is assigned to.

Let C = {C1, C2, . . . , Ck} be the resulting clusters, grouped exclusively based
on the similarity in representation space. We now analyze them with respect to label
purity to identify sets of samples in representation space that have already been learned
and can be omitted from further training. We formalize this analysis as the ratio of the
most frequently occurring (MFO) class label ratio in a cluster, MFOi, as MFOi =

max`∈L

∑
x∈Ci:L(x)=` 1

|Ci| i.e., the ratio of the most frequently occurring class label in a
cluster Ci is the maximum (over possible labels) of the ratio between the number of
instances with that label and the cardinality of the cluster. Clusters with low MFOi are
valuable for training, whereas those whereMFOi is close to 1 are uninteresting as little
more can be learned. A strong model has MFOi for all clusters close to 1 (otherwise
accuracy is low, see above). If there are only two classes {0, 1}, we simplify using the

ratio for only one class fi =
∑

x∈Ci:L(x)=1 1

|Ci| and obtain MFOi = max(fi, 1− fi).
Our goal is to separate interesting from uninteresting clusters by finding a suitable

threshold for the MFO ratio to filter uninteresting training instances away and focus
training on interesting ones only. More formally we wish to choose the lowest possible
MFO threshold such that models trained with our approachms

θ satisfy the optimization
goal, i.e., that the objective function value over the model trained using our selective
strategy is at least as good as the objective value obtained with full training over all data
samples over all training cycles.

This can be seen as a balance between two forces: (1.) high MFO cutoff means fil-
tering only data where we are sure of the label, and do not mistakenly dismiss informa-
tion and in turn decrease model accuracy. (2.) lowMFO cutoff means reducing training
to fewer instances, thus fewer minibatches and finally lower training time. Clearly, the
best filtering cutoff is a trade-off. We propose to study the decrease in MFO in the log-
scale, and define ∆MFO = − log10(1−MFO). Our empirical study suggests values
in the range 2 ≥ ∆MFO ≥ 1.5. At prediction time we match new data to clusters.
For data in removed clusters we use its dominating class label. For other clusters, we
use the model trained on the reduced set. Algorithm 1 outlines our selective training
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strategy. In the experiments, we demonstrate that our approach indeed converges faster,
i.e., uses fewer training epochs and converges to an accuracy that is at least as high as
the one for full time training on all data.

Algorithm 1 Proposed fast training approach
1: procedure
2: D← corpus of labeled documents
3: k ← Number of clusters to generate
4: MFOcut ← cutoff for filtering
5: while pretraining do
6: ∆Acc← rate of acc. improv.
7: if ∆Acc starts dropping then
8: break pretraining
9: Cluster using K-means

10: MFOi ←MFO for cluster i
11: D′ ← clusters with MFOi ≤MFOcut

12: while main-training do
13: train on reduced dataset D′

14: if convergence is achieved then
15: break main-training

5 Evaluation

5.1 Data and experimental setup

We use the large-scale, open access Enron data [18], comprised of more than 500, 000
documents that vary greatly in style, language and length and thus provide excellent
insight into performance on varied text. All documents are split into sentences using
the Punkt sentence boundary detection approach [16]. Constituency parse trees (split-
ting sentences into phrases) are generated from a probabilistic context-free grammar
[17], trained over the Stanford Penn Treebank [32]. We train a recursive neural network
model over these parse trees, which allows us to learn an embedding for each phrase.
We make this data available online6.

We use labels by domain experts from the TREC competition [6, 33], where topics
were labeled by at least 3 human annotators (using majority where different). We eval-
uate on 4 binary topics where a sentence is true if it belongs to the topic and false other-
wise: FCAST : 267366 sentences regarding Enron’s financial state. We use 40000 sen-
tences for validation, 40000 for testing, the rest for training. The percentage of positive
(i.e., true) sentences is 31%. FAS: 178266 sentences where Enron claims compliance
with Financial Accounting Standards7. We use 27000 sentences for validation, 27000
for training; 59% positive sentences. PPAY : 134256 sentences about financial prepay
transactions. We use 15000 sentences for validation, 15000 for testing; 13% positive

6 code https://bitbucket.alexandra.dk/projects/TAB, data https:
//dataverse.harvard.edu/dataverse/enron-w-trees

7 http://www.fasb.org/jsp/FASB/Document_C/DocumentPage?cid=
1218220124871
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sentences. EDENCE: 167913 sentences discussing tampering with evidence. We use
25000 sentences for validation, 25000 for testing; positive sentences 23%. For further
details see [6, 33, 24].

We test Selective Training on an RecNN where the intrinsic model is applied recur-
sively over parse-trees. For long sentences the number of layers in the final recursive
network (“unfolded” in time and structure) reaches several hundreds layers. We report
findings where the intrinsic model has a single hidden layer and where the hidden layer
has 100 neurons. We have tested on a smaller development set and found these hyperpa-
rameters to yield robust performance. Standard full training takes in the order of 1 day
per 1, 000, 000 minibatches, whereas clustering takes few minutes. Minibatch count is
thus an appropriate measure for training time of full and selective training .

FCAST FAS PPAY EDENCE
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

T
im

e

Std. RecNN

Pretraining

Selective Training

Fig. 1. Training time (in mini-batches) on 4 datasets

5.2 Empirical study and discussion

Fig. 1 reports training times on 4 different datasets of varying complexities. Standard
backpropagation through structure (denoted Std. RecNN in the figure) converges on the
EDENCE dataset in 758, 000 minibatches, and on the PPAY dataset in 3, 674, 000
minibatches, even though the datasets are of comparable size. Our approach reduces the
training time by a factor of approximately 2 to 6, depending on the dataset under study.
FCAST and FAS have approximately the same runtime on the full dataset, which our
approach reduces for FCAST by factor 2.42, while for FAS we obtain an impressive
factor of 6.1. It seems that FAS can be learned from fewer training instances, which
our method picks up on.

It is interesting to note that our approach indeed selects the most relevant sets of
samples for training, even being able to slightly improve accuracy. Comparing stan-
dard full training and our selective training strategy (in parentheses), we have FCAST
83.24% (83.41%), FAS 96.05% (96.40%), PPAY 95.93% (96.09%) andEDENCE
89.02% (89.12%).

Stopping pre-training, i.e., when to cluster and remove instances, can be determined
from the graph over accuracy as a function of training time (see Fig. 2 for accuracy on
PPAY using backpropagation; other datasets show similar behaviour; omitted here
due to space limitations).

Vertical cuts on the training graph show pretraining stopping points and the number
of additional mini-batch visits required after filtering. The minimum (Total column)
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Pretraining Training Total
0 3, 674, 000 3, 674, 000

50, 000 2, 128, 000 2, 178, 000
100, 000 2, 365, 000 2, 465, 000
150, 000 913, 000 1, 063, 000
200,000 830,000 1,030,000
250, 000 1, 036, 000 1, 286, 000
500, 000 1, 818, 000 2, 318, 000

Table 1. Pretraining cutoff on PPAY
0 1000000 2000000 3000000

Visited Minibatches

90

92

94

96

A
cc
ur
ac
y

50K

100K

150K

200K

250K

500K

Training Accuracy

Fig. 2. Pre-train cutoffs, PPAY training curve

is at 200, 000 mini-batches. Comparing with cut-lines in Figure 2, we note that the
best stopping point for pretraining is where the curve “bends”, i.e., where the rate of
improvement starts to plateau. At this point we have gained most (further gains are
more expensive) and thus have the best potential for out-performing full training. At
this point, large-scale statistical properties of the data are encoded.

To generate the curve in Figure 2, we use the “pocket” algorithm where the best
performing model seen so far is used to output the accuracy on a small validation set.
This process yields a nice monotonically increasing curve and allows for a simple pre-
training cutoff criteria. In our experiments, we stopped training manually based on the
curve, but this could be automatized based on the shape and slope of the curve.

MFO ∆MFO Count Percentage Total Training
- (0) - - 3, 674, 000
0.9970 2.52 1 3.6% 3, 362, 000
0.9945 2.26 3 11.9% 2, 574, 000
0.9940 2.22 4 19.3% 1, 194, 000
0.9867 1.88 5 23.0% 1, 030, 000
0.9863 1.85 6 26.9% 891, 000
0.9858 1.85 8 34.3% 1, 480, 000
0.9800 1.70 12 50.6% 1, 739, 000
0.9720 1.55 15 59.9% >5, 000, 000

Table 2. Filter percentage, PPAY , 200K minibatches

.

To determine how many clusters should be filtered out, we study the model after
200, 000 minibatches and its sentence representations. These representations are clus-
tered using K-means and we filter out all clusters with a higher MFO ratio than a filter
cutoff. Figure 3 shows clusters sorted by the ratio of sentences with class 1 (using the
simplified approach for 2-class problems as described above). Clusters to be filtered
(i.e., highMFO ratios) are at the far left and right and clusters to keep are at the center.
Note that theMFO ratio for the far left clusters is much higher than theMFO ratio for
the far right clusters. For dataset PPAY it seems easier finding pure clusters of label
0, whereas clusters with a high ratio of label 1 tend to be mixed with many examples of
label 0 occurrences. Thus, here we only filter clusters on the far left.
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We show converge times for different filtering cutoffs from 1 cluster (3.6% of data
filtered) to 15 clusters (59.9%) in Table 2. We observe marked improvements in the
range 19.3% to 26.9%. Cutoffs are shown as vertical lines against class 1 ratio in Fig. 3.

0 10 20 30

Clusters

0.0
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0.8

1.0
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la
ss

1
ra
ti
o

Sensitivity Ratio

c = 1 (3.6%)

c = 3 (16.9%)

c = 4 (19.3%)

c = 5 (23.0%)

c = 6 (26.9%)

c = 8 (34.3%)

c = 12 (50.6%)

c = 15 (59.9%)

Fig. 3. Filter cutoffs (Table 2) over class 1 ratio.

Table 2 shows a large drop in ∆MFO from 2.22 to 1.88, where we thus should
place our cut to obtain a runtime of 1, 194, 000, which is significantly less than the
standard full training runtime of 3, 674, 000.

Table 3 shows robustness to hyperparameter k. We test values between 15 and 70
and compare runtime of 3 different filtering cuts. Each cut is a row in Table 3 (“Small
(S)”, “Medium (M)”, “Large (L)”). “Medium (M)” corresponds to the optimal size
cut and the others are smaller and larger, respectively. We set the MFO cutoff such
that we filter approximately the same amount of examples across different k values
(ratio of filtered samples given in column “Size”). Please note that the actual ratio of
samples filtered varies only slightly, due to filtering an integral number of clusters, but
still allowing a comparison of runtimes across different values of k.

Across k values we experiment with filtering a “Small (S)” amount (≈ 12%) of
data, a “Medium (M)” amount (≈ 27%) and a “Large (L)” amount (≈ 33%). Table 3
shows that runtimes only vary slightly, i.e., an average difference from mean of 6.32%,
6.19%, 11.21% for Small, Medium and Large, respectively. Thus, k does not impact
reduction in training time significantly.

k = 15 k = 35 k = 70
Size Time Size Time Size Time Avg. Diff

S 11.92% 1, 486K 11.91% 1, 683K 11.87% 1, 756K 6.32%
M 27.84% 924K 26.92% 891K 26.92% 1, 040K 6.19%
L 33.66% 1, 551K 34.32% 1, 480K 33.07% 1, 933K 11.21%

Table 3. Time (measured as number of minibatches) over k and filtering cutoffs (Small (S),
Medium (M) and Large (L)). Size is filtered data ratio

6 Detailed Error Analysis

We study whether selective training still learns models that generalize as well as full
training models do. We report prediction accuracy in PPAY (76067 sentences with
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embeddings from both selected and full training set) in the interest of space; findings
are similar for the other datasets.

Table 4 shows that the standard full training model misclassifies 1926 instances,
whereas our approach only misclassifies 1565. Out of these 1565, 869 are made by
the full training approach as well, i.e., our approach makes 18.74% fewer errors and
out of the remaining, 55% are identical to those of full training. We conclude that our
speed up does not jeopardize accuracy, but even leads to slightly improved accuracy.
We analyze errors using K-means clustering of embeddings (Table 5). Here Id refers

Total number of shared embeddings 76067

Errors of the standard training 1926

Accuracy of the standard training 97.47%

Errors of our training method 1565

Accuracy of our training method 97.94%
Table 4. Shared embeddings in PPAY .

Id Size Accuracy
1 97 100.0%
2 113 100.0%
3 112 99.1071%
4 188 98.9362%

5 134 89.5522%
6 202 78.7229%
7 310 74.8387%
8 78 71.0526%

9 185 48.6486%
10 148 41.8919%

Table 5. Error statistics. See text for details.

to cluster id. Size is the number of elements (errors) in a cluster and Accuracy the
overall accuracy when we cluster all data elements (not just errors) into these 10 clusters
and calculate the accuracy of our approach per cluster. The errors are fairly uniformly
distributed; we observe that except for group 7 with 310 elements, all other clusters have
size around 100 − 200. This uniform size distribution (especially compared to Fig. 3)
suggests that the errors are not concentrated in any particular part of the embedding
space. Our approach thus is expected to generalize well.

A concern for the clustering step could be that K-Means fails to do meaningful
clustering for very high representation sizes. Such investigation falls outside the work
done here. However we observe that this degradation of K-means has been investigated
in [2] where the authors find that hierarchical K-means may provide strong clustering
even for high dimensionalities.

Before studying actual examples, we note that the first four groups in Table 5 con-
tain 510 out of 1565 of our errors (32.59%) with high MFO, all for label 1, which
makes some of the errors in these groups challenging to resolve. Groups 6, 7, 8 have
a medium MFO score, with group 5 showing a slightly higher score. Finally, groups
{9, 10} show lower MFO. From Table 6 with error examples from each group, we ob-
serve the following types of errors: Soft errors. Clusters 2, 3, 4 contain examples of
prepay transactions (label 1) where wording and structure seem to be good indicators of
the class. These clusters also contain challenging samples. Cluster 7 seems similar, but
shows greater diversity in label distribution, which is even more challenging to resolve.
Poor filtering. Cluster 8 contains examples of sentences which should have been fil-
tered out in pre-processing, and can therefore be used to inform the pre-processing step.
Short emails and headers. Clusters 6, 9 contain examples of short email sentences.
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Again, this can be used to inform pre-processing e.g. combining them with email sub-
ject, to/from or the like. Hard errors. Clusters 1, 5, 10 contain headlines, locations and
sentences with little information, which we consider unlikely targets for improvement
based on sentences alone.

Group Id Sentence Type of error
1 Section 12.1 Duration Document headlines
2 I spoke to Tim today regarding the prepayment

transactions with terminated counterparties Generic sentence
3 Let me know, but as I understand it, the Chase agreement

should be a good format for this master agreement Stating facts
4 A similar swap was entered into between the American

Public Energy Agency and Chase on the same date Prepay technicalities
5 Maybe this happens in a region of not prepay and that is

why... New York, New York 10043 Specific location
6 If there is anything else you need please feel free to

call me on 0207 783 5404 Short standard email
7 Please let me know the nature of the transaction

with National Steel General question wrt. entity
8 [. . .] – – – – – - Enron-6.11.00.ppt Bad text/filtering
9 RE: Swap Transaction; Deal No M180816 Preambles, email header
10 The PSCO Project will be sold into TurboPark on 1/19/01 Abbreviation and numbers

Table 6. Samples from each of the 10 error groups with description of type of error

In summary, some groups can be used directly to improve performance further in
pre-processing, others offer potential for future work, and few contain too little informa-
tion to be correctly predicted. Models trained using our faster selective training strategy
seem to generalize just as well as full training, providing even slightly better accuracy.

7 Related Work

There is a large body of research on different training strategies, often with the aim of
improving the accuracy or stability of a classifier. The classical approach is AdaBoost
[8] which adapts training depending on the error observed by weighing “difficult” ex-
amples higher. At an abstract level, boosting also refocuses training. However, there are
two core differences between our approach and boosting: first, we aim to reduce train-
ing time (i.e., speeding up convergence of the model parameters) by removing samples
that are not expected to benefit. And secondly, we base the selection of samples on
their multi-dimensional representation rather than on the one-dimensional difference in
ground truth label and predicted label. For an extensive survey of bagging and boosting
in classification we refer the interested reader to [19].

Adaptive learning methods, such as Adam [14], automatically adjust the learning
rate based on adaptive estimates of lower-order moments in the loss function. [14] ob-
serve faster convergence of the model during training to a particular accuracy (cost)
value compared to other popular learning optimizers (AdaGrad, RMSProp, SGDNes-
terov, AdaDelta). Adaptive learning methods thus essentially adjust the learning rate,
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whereas our approach takes a fundamentally different approach that adapts the training
data being used to learn accurate models much more efficiently. [22] estimates which
samples provide largest decrease in loss function based on estimates of previous de-
creases incurring anN logN sorting/rank penalty over all samples. By contrast, we use
the rich information embedded in the representations, using clustering for easy selec-
tion. Zhao et al. [34] use K-means clustering to differentiate local from global word
context for improved text embeddings, but not for training time reduction.

8 Conclusion and Future Work

We present an efficient selective strategy for reducing training time of complex models,
focusing on recurrent neural networks over phrase trees on large text datasets. We pro-
pose studying groups in representation space to identify where learning from training
data seems to be completed, and where more training is expected to improve model
accuracy. Discarding clusters with pure label distribution, we refocus training to those
samples that lead to high accuracy models with less training time. We show how to
easily infer the parameters for selecting clusters using rate of improvement on training
graphs and our proposed ∆MFO measure. In thorough experiments, we demonstrate
up to 6 times faster training without loss of accuracy on a number of datasets.

Our method generalizes to similar training problems of complex models that gener-
ate distributed instance representations. We intend to study representation based mod-
els, such as Recurrent Neural Networks, Long Short Term Memory Networks and Con-
volutional Neural Networks.
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