292 research outputs found

    An Implementation of the Parallel K-core Decomposition Algorithm in GraphBLAS

    Get PDF
    The k-core of an undirected graph is the largest subgraph in which every vertex has a degree of at least some number k. Computing the k-core, also known as the k-core decomposition algorithm, has significant applications in network analysis, visualization, bioinformatics, and community detection. There exists a sequential procedure, developed by Batagelj and Zaversnik in 2003, that accurately performs k-core decomposition. This implementation has been consistently referenced as the gold standard, due to its O(n + m) runtime. However, due to its large working set and lack of parallelism, its performance suffers on modern big-data graph problems where sheer size tends to overwhelm runtime due to cache misses. A 2014 algorithm designed by Dasari, Desh and Zubair M implements a parallel version of k-core decomposition (ParK) with significant speedup on multithreaded architectures. This paper aims to describe the development and implementation of ParK using the SuiteSparse:GraphBLAS API in C, a robust framework that defines a set of matrix and vector operations based on an algebra of semirings to perform computations on graphs. We show that while the GraphBLAS algorithm underperforms versus the sequential implementation in a full decomposition, a modified version of the algorithm that only computes a partial decomposition given some value k is significantly faster

    Expression and methylation status of tissue factor pathway inhibitor-2 gene in non-small-cell lung cancer

    Get PDF
    Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type serine proteinase inhibitor that inhibits plasmin-dependent activation of several metalloproteinases. Downregulation of TFPI-2 could thus enhance the invasive potential of neoplastic cells in several cancers, including lung cancer. In this study, TFPI-2 mRNA was measured using a real-time PCR method in tumours of 59 patients with non-small-cell lung cancer (NSCLC). Tumour TFPI-2 mRNA levels appeared well correlated with protein expression evaluated by immunohistochemistry and were 4–120 times lower compared to those of nonaffected lung tissue in 22 cases (37%). Hypermethylation of the TFPI-2 gene promoter was demonstrated by restriction enzyme-polymerase chain reaction in 12 of 40 cases of NSCLC (30%), including nine of 17 for whom tumour TFPI-2 gene expression was lower than in noncancerous tissue. In contrast, this epigenetic modification was shown in only three of 23 tumours in which no decrease in TFPI-2 synthesis was found (P=0.016). Decreased TFPI-2 gene expression and hypermethylation were more frequently associated with stages III or IV NSCLC (eight out of 10, P=0.02) and the TFPI-2 gene promoter was more frequently hypermethylated in patients with lymph node metastases (eight out of 16, P=0.02). These results suggest that silencing of the TFPI-2 gene by hypermethylation might contribute to tumour progression in NSCLC

    D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma

    Get PDF
    Asthma is characterized by oxidative stress and inflammation of the airways. Although proinflammatory lipids are involved in asthma, therapies targeting them remain lacking. Ac-DWFKAFYDKVAEKFKEAFNH2 (4F) is an apolipoprotein (apo)A-I mimetic that has been shown to preferentially bind oxidized lipids and improve HDL function. The objective of the present study was to determine the effects of 4F on oxidative stress, inflammation, and airway resistance in an established murine model of asthma. We show here that ovalbumin (OVA) -sensitization increased airway hyperresponsiveness, eosinophil recruitment, and collagen deposition in lungs of C57BL/6J mice by a mechanism that could be reduced by 4F. OVA sensitization induced marked increases in transforming growth factor (TGF)β-1, fibroblast specific protein (FSP)-1, anti-T15 autoantibody staining, and modest increases in 4-hydroxynonenal (4-HNE) Michael\u27s adducts in lungs of OVA-sensitized mice. 4F decreased TGFβ-1, FSP-1, anti-T15 autoantibody, and 4-HNE adducts in the lungs of the OVA-sensitized mice. Eosinophil peroxidase (EPO) activity in bronchial alveolar lavage fluid (BALF), peripheral eosinophil counts, total IgE, and proinflammatory HDL (p-HDL) were all increased in OVA-sensitized mice. 4F decreased BALF EPO activity, eosinophil counts, total IgE, and p-HDL in these mice. These data indicate that 4F reduces pulmonary inflammation and airway resistance in an experimental murine model of asthma by decreasing oxidative stress

    Automated final lesion segmentation in posterior circulation acute ischemic stroke using deep learning

    Get PDF
    Final lesion volume (FLV) is a surrogate outcome measure in anterior circulation stroke (ACS). In posterior circulation stroke (PCS), this relation is plausibly understudied due to a lack of methods that automatically quantify FLV. The applicability of deep learning approaches to PCS is limited due to its lower incidence compared to ACS. We evaluated strategies to develop a convolutional neural network (CNN) for PCS lesion segmentation by using image data from both ACS and PCS patients. We included follow-up non-contrast computed tomography scans of 1018 patients with ACS and 107 patients with PCS. To assess whether an ACS lesion segmentation generalizes to PCS, a CNN was trained on ACS data (ACS-CNN). Second, to evaluate the performance of only including PCS patients, a CNN was trained on PCS data. Third, to evaluate the performance when combining the datasets, a CNN was trained on both datasets. Finally, to evaluate the performance of transfer learning, the ACS-CNN was fine-tuned using PCS patients. The transfer learning strategy outperformed the other strategies in volume agreement with an intra-class correlation of 0.88 (95% CI: 0.83–0.92) vs. 0.55 to 0.83 and a lesion detection rate of 87% vs. 41–77 for the other strategies. Hence, transfer learning improved the FLV quantification and detection rate of PCS lesions compared to the other strategies

    Nitric oxide synthases in infants and children with pulmonary hypertension and congenital heart disease

    Get PDF
    Nitric oxide is an important regulator of vascular tone in the pulmonary circulation. Surgical correction of congenital heart disease limits pulmonary hypertension to a brief period. The study has measured expression of endothelial (eNOS), inducible (iNOS), and neuronal nitric oxide synthase (nNOS) in the lungs from biopsies of infants with pulmonary hypertension secondary to cardiac abnormalities (n = 26), compared to a control group who did not have pulmonary or cardiac disease (n = 8). eNOS, iNOS and nNOS were identified by immunohistochemistry and quantified in specific cell types. Significant increases of eNOS and iNOS staining were found in pulmonary vascular endothelial cells of patients with congenital heart disease compared to control infants. These changes were confined to endothelial cells and not present in other cell types. Patients who strongly expressed eNOS also had strong expression of iNOS. Upregulation of eNOS and iNOS occurs at an early stage of pulmonary hypertension, and may be a compensatory mechanism limiting the rise in pulmonary artery pressure

    Reduced expression of tissue factor pathway inhibitor-2 contributes to apoptosis and angiogenesis in cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue factor pathway inhibitor-2 (TFPI-2) is an extracellular matrix associated broad-spectrum Kunitz-type serine proteinase inhibitor. Recently, down regulation of TFPI-2 was suggested to be involved in tumor invasion and metastasis in some cancers.</p> <p>Methods</p> <p>This study involved 12 normal cervical squamous epithelia, 48 cervical intraepithelial neoplasia (CIN), and 68 cervical cancer. The expression of TFPI-2, Ki-67 and vascular endothelial growth factor (VEGF) were investigated by immunohistochemistry staining. The apoptolic index(AI) was determined with an in situ end-labeling assay(TUNEL). And the marker of CD34 staining was used as an indicator of microvessel density (MVD).</p> <p>Results</p> <p>TFPI-2 expression has a decreasing trend with the progression of cervical cancer and was significantly correlated with FIGO stage, lymph node metastasis and HPV infection. In addition, there were significant positive correlations between the grading of TFPI-2 expression and AI(P = 0.004). In contrast, the expression of TFPI-2 and VEGF or MVD was negatively correlated (both p < 0.001). However, we did not establish any significant correlation between Ki-67 and TFPI-2 expression in cervical cancer.</p> <p>Conclusions</p> <p>The results suggested that the expression of TFPI-2 had a decreasing trend with tumor progression of cervical cancer. There was a close association between the expression of TFPI-2 and tumor cell apoptosis and angiogenesis in patients with cervical cancer. TFPI-2 may play an inhibitive role during the development of cervical cancer.</p
    corecore