29 research outputs found

    Exoplanetary atmosphere target selection in the era of comparative planetology

    Full text link
    The large number of new planets expected from wide-area transit surveys means that follow-up transmission spectroscopy studies of their atmospheres will be limited by the availability of telescope assets. We argue that telescopes covering a broad range of apertures will be required, with even 1m-class instruments providing a potentially important contribution. Survey strategies that employ automated target selection will enable robust population studies. As part of such a strategy, we propose a decision metric to pair the best target to the most suitable telescope, and demonstrate its effectiveness even when only primary transit observables are available. Transmission spectroscopy target selection need not therefore be impeded by the bottle-neck of requiring prior follow-up observations to determine the planet mass. The decision metric can be easily deployed within a distributed heterogeneous network of telescopes equipped to undertake either broadband photometry or spectroscopy. We show how the metric can be used either to optimise the observing strategy for a given telescope (e.g. choice of filter) or to enable the selection of the best telescope to optimise the overall sample size. Our decision metric can also provide the basis for a selection function to help evaluate the statistical completeness of follow-up transmission spectroscopy datasets. Finally, we validate our metric by comparing its ranked set of targets against lists of planets that have had their atmospheres successfully probed, and against some existing prioritised exoplanet lists.Comment: 20 pages, 16 figures, 3 tables. Revision 3, accepted by MNRAS. Improvements include always using planetary masses where available and reliable, treatment for sky backgrounds and out-of-transit noise and a use case for defocused photometr

    Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification

    Full text link
    One of the principal bottlenecks to atmosphere characterisation in the era of all-sky surveys is the availability of fast, autonomous and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplanetary atmosphere parameters from transmission spectra. We use principal component analysis (PCA) to efficiently compress the information content of a library of transmission spectra forward models generated using the PLATON package. We then apply a kk-means clustering algorithm in PCA space to segregate the library into discrete classes. We show that our classifier is almost always able to instantaneously place a previously unseen spectrum into the correct class, for low-to-moderate spectral resolutions, RR, in the range R = 30−300R~=~30-300 and noise levels up to 1010~per~cent of the peak-to-trough spectrum amplitude. The distribution of physical parameters for all members of the class therefore provides an informed prior for standard retrieval methods such as nested sampling. We benchmark our informed-prior approach against a standard uniform-prior nested sampler, finding that our approach is up to a factor two faster, with negligible reduction in accuracy. We demonstrate the application of this method to existing and near-future observatories, and show that it is suitable for real-world application. Our general approach is not specific to transmission spectroscopy and should be more widely applicable to cases that involve repetitive fitting of trusted high-dimensional models to large data catalogues, including beyond exoplanetary science.Comment: Accepted for publication in MNRA

    Transit timing variation and transmission spectroscopy analyses of the hot Neptune GJ3470b

    Get PDF
    GJ3470b is a hot Neptune exoplanet orbiting an M dwarf and the first sub-Jovian planet to exhibit Rayleigh scattering. We present transit timing variation (TTV) and transmission spectroscopy analyses of multiwavelength optical photometry from 2.4-m and 0.5-m telescopes at the Thai National Observatory, and the 0.6-m PROMPT-8 telescope in Chile. Our TTV analysis allows us to place an upper mass limit for a second planet in the system. The presence of a hot Jupiter with a period of less than 10 d or a planet with an orbital period between 2.5 and 4.0 d are excluded. Combined optical and near-infrared transmission spectroscopy favour an H/He-dominated haze (mean molecular weight 1.08 ± 0.20) with high particle abundance at high altitude. We also argue that previous near-infrared data favour the presence of methane in the atmosphere of GJ3470b

    Thai national telescope studies of ultraluminous X-ray sources

    Get PDF
    Ultraluminous X-ray sources (ULXs) are extra-galactic, non-nuclear sources with X-ray luminosity in excess of 10^39 erg s^–1. It has been thought that the majority of ULX populations are stellar-mass objects accreting matter at a super-Eddington rate. Although ULX studies are often focused in the X-ray regime, this work studied the ULXs in the optical regime, identified as the ULX counterparts (CTPs). The optical variability of nine CTPs were observed using the 2.4-m Thai National Telescope. Out of the nine ULXs, we detected three ULXs exhibiting strong variability up to ~1 magnitude, suggesting that the CTP light does not come from the donor star's emission. The paper discusses the physical origins of the variability which potentially explain the observed light curves

    Solar Magnetic Polarity Effect on Neutron Monitor Count Rates: Comparing Latitude Surveys and Antarctic Stations

    Full text link
    The Galactic cosmic ray spectrum manifests pronounced variations over the 11-year sunspot cycle and more subtle variations over the 22-year solar magnetic cycle. An important tool to study these variations is repeated latitude surveys with neutron monitors (NMs) onboard icebreakers in conjunction with land-based references. We revisit 13 annual latitude surveys from 1994 to 2007 using reference data from the Mawson NM instead of McMurdo NM (which closed in 2017). We then consider two more latitude surveys (2018 and 2019) with a monitor similar to the 3NM64 in the previous surveys but without lead rings around the central tube, a so-called ``semi-leaded neutron monitor.'' The new surveys extend the linear relationship among data taken at different cutoff rigidity ranges. They also confirm the ``crossover'' measured near solar minima during epochs of opposite solar magnetic polarity and the absence of a crossover for epochs having the same solar magnetic polarity.Comment: Accepted for publication in Astrophys.

    TransitFit: an exoplanet transit fitting package for multi-telescope datasets and its application to WASP-127~b, WASP-91~b, and WASP-126~b

    Full text link
    We present TransitFit, an open-source Python~3 package designed to fit exoplanetary transit light-curves for transmission spectroscopy studies (Available at https://github.com/joshjchayes/TransitFit and https://github.com/spearnet/TransitFit, with documentation at https://transitfit.readthedocs.io/). TransitFit employs nested sampling to offer efficient and robust multi-epoch, multi-wavelength fitting of transit data obtained from one or more telescopes. TransitFit allows per-telescope detrending to be performed simultaneously with parameter fitting, including the use of user-supplied detrending alogorithms. Host limb darkening can be fitted either independently ("uncoupled") for each filter or combined ("coupled") using prior conditioning from the PHOENIX stellar atmosphere models. For this TransitFit uses the Limb Darkening Toolkit (LDTk) together with filter profiles, including user-supplied filter profiles. We demonstrate the application of TransitFit in three different contexts. First, we model SPEARNET broadband optical data of the low-density hot-Neptune WASP-127~b. The data were obtained from a globally-distributed network of 0.5m--2.4m telescopes. We find clear improvement in our broadband results using the coupled mode over uncoupled mode, when compared against the higher spectral resolution GTC/OSIRIS transmission spectrum obtained by Chen et al. (2018). Using TransitFit, we fit 26 transit observations by TESS to recover improved ephemerides of the hot-Jupiter WASP-91~b and a transit depth determined to a precision of 170~ppm. Finally, we use TransitFit to conduct an investigation into the contested presence of TTV signatures in WASP-126~b using 126 transits observed by TESS, concluding that there is no statistically significant evidence for such signatures from observations spanning 31 TESS sectors.Comment: 14 pages, 5 figures, 5 tables, submitted to MNRAS. Temporary data address at https://cdsarc.u-strasbg.fr/ftp/vizier.submit/wasp-127b/ (Final address to be included in accepted paper

    Circumbinary planet study around NSVS 14256825

    Get PDF
    The period variability of (O-C) diagram of an eclipsing binary, NSVS 14256825, which is composed of a hot subdwarf type OB star (sdOB) and a main-sequence low-mass type M star (dM) in close orbit with period P=0.110374 days, previously showed sinusoidal signal cause by the light travel time effects. This signal can be caused by the presence of third bodies. We re-examined (O-C) diagram of the system. We combined eclipse timings from published data and the data taken from ULTRASPEC at 2.4 m at Thai National Telescope on November 2018. From the fitting model, the parameters of the third body in NSVS 14256825 system are obtained

    The KELT Follow-Up Network And Transit False-Positive Catalog: Pre-Vetted False Positives For TESS

    Get PDF
    The Kilodegree Extremely Little Telescope (KELT) project has been conducting a photometric survey of transiting planets orbiting bright stars for over 10 years. The KELT images have a pixel scale of ~23\u27\u27 pixel⁻Âč—very similar to that of NASA\u27s Transiting Exoplanet Survey Satellite (TESS)—as well as a large point-spread function, and the KELT reduction pipeline uses a weighted photometric aperture with radius 3\u27. At this angular scale, multiple stars are typically blended in the photometric apertures. In order to identify false positives and confirm transiting exoplanets, we have assembled a follow-up network (KELT-FUN) to conduct imaging with spatial resolution, cadence, and photometric precision higher than the KELT telescopes, as well as spectroscopic observations of the candidate host stars. The KELT-FUN team has followed-up over 1600 planet candidates since 2011, resulting in more than 20 planet discoveries. Excluding ~450 false alarms of non-astrophysical origin (i.e., instrumental noise or systematics), we present an all-sky catalog of the 1128 bright stars (6 \u3c V \u3c 13) that show transit-like features in the KELT light curves, but which were subsequently determined to be astrophysical false positives (FPs) after photometric and/or spectroscopic follow-up observations. The KELT-FUN team continues to pursue KELT and other planet candidates and will eventually follow up certain classes of TESS candidates. The KELT FP catalog will help minimize the duplication of follow-up observations by current and future transit surveys such as TESS
    corecore