1,382 research outputs found

    The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice

    Get PDF
    Early-life stress (ELS) leads to increased vulnerability for mental and metabolic disorders. We have previously shown that a low dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Due to the importance of the gut microbiota as a determinant of long-term health, we here study the impact of ELS and dietary PUFAs on the gut microbiota and how this relates to the previously described cognitive, metabolic, and fatty acid profiles. Male mice were exposed to ELS via the limited bedding and nesting paradigm (postnatal day (P)2 to P9 and to an early diet (P2 to P42) with an either high (15) or low (1) ω-6 linoleic acid to ω-3 alpha-linolenic acid ratio. 16S rRNA was sequenced and analyzed from fecal samples at P21, P42, and P180. Age impacted α- and β-diversity. ELS and diet together predicted variance in microbiota composition and affected the relative abundance of bacterial groups at several taxonomic levels in the short and long term. For example, age increased the abundance of the phyla Bacteroidetes, while it decreased Actinobacteria and Verrucomicrobia; ELS reduced the genera RC9 gut group and Rikenella, and the low ω-6/ω-3 diet reduced the abundance of the Firmicutes Erysipelotrichia. At P42, species abundance correlated with body fat mass and circulating leptin (e.g., Bacteroidetes and Proteobacteria taxa) and fatty acid profiles (e.g., Firmicutes taxa). This study gives novel insights into the impact of age, ELS, and dietary PUFAs on microbiota composition, providing potential targets for noninvasive (nutritional) modulation of ELS-induced deficits. IMPORTANCE Early-life stress (ELS) leads to increased vulnerability to develop mental and metabolic disorders; however, the biological mechanisms leading to such programming are not fully clear. Increased attention has been given to the importance of the gut microbiota as a determinant of long-term health and as a potential target for noninvasive nutritional strategies to protect against the negative impact of ELS. Here, we give novel insights into the complex interaction between ELS, early dietary ω-3 availability, and the gut microbiota across ages and provide new potential targets for (nutritional) modulation of the long-term effects of the early-life environment via the microbiota

    Purification and Reconstitution of the Glutamate Carrier GltT of the Thermophilic Bacterium Bacillus stearothermophilus

    Get PDF
    An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli and shown to transport glutamate. The highest levels of expression were observed in E. coli strain DH5α grown on rich medium. The protein could be purified in a single step by Ni2+-NTA affinity chromatography after solubilization of the cytoplasmic membranes with the detergent Triton X100. Purified GltT was reconstituted in an active state in liposomes prepared from E. coli phospholipids. The protein was reconstituted in detergent-treated preformed liposomes, followed by removal of the detergent with polystyrene beads. Active reconstitution was realized with a wide range of Triton X100 concentrations. Neither the presence of glycerol, phospholipids, nor substrates of the transporter was necessary during the purification and reconstitution procedure to keep the enzyme in an active state. In B. stearothermophilus, GltT translocates glutamate in symport with protons or sodium ions. In membrane vesicles derived from E. coli cells expressing GltT, the Na+ ion dependency seems to be lost, suggesting a role for the lipid environment in the cation specificity. In agreement with the last observation, glutamate transport catalyzed by purified GltT reconstituted in E. coli phospholipid is driven by an electrochemical gradient of H+ but not of Na+.

    Конференции

    Get PDF
    Background Polypharmacy poses threats to patients’ health. The Systematic Tool to Reduce Inappropriate Prescribing (STRIP) is a drug optimization process for conducting medication reviews in primary care. To effectively and efficiently incorporate this method into daily practice, the STRIP Assistant—a decision support system that aims to assist physicians with the pharmacotherapeutic analysis of patients’ medical records—has been developed. It generates context-specific advice based on clinical guidelines. Objective The aim of this study was to validate the STRIP Assistant’s usability as a tool for physicians to optimize medical records for polypharmacy patients. Methods In an online experiment, 42 physicians were asked to optimize medical records for two comparable polypharmacy patients, one in their usual manner and one using the STRIP Assistant. Changes in effectiveness were measured by comparing respondents’ optimized medicine prescriptions with medication prepared by an expert panel of two geriatrician-pharmacologists. Efficiency was operationalized by recording the time the respondents took to optimize the two cases. User satisfaction was measured with the System Usability Scale (SUS). Independent and paired t tests were used for analysis. Results Medication optimization significantly improved with the STRIP Assistant. Appropriate decisions increased from 58 % without the STRIP Assistant to 76 % with it (p < 0.0001). Inappropriate decisions decreased from 42 % without the STRIP Assistant to 24 % with it (p < 0.0001). Participants spent significantly more time optimizing medication with the STRIP Assistant (24 min) than without it (13 min; p < 0.0001). They assigned it a below-average SUS score of 63.25. Conclusion The STRIP Assistant improves the effectiveness of medication reviews for polypharmacy patients

    Improved estimation of inbreeding and kinship in pigs using optimized SNP panels

    Get PDF
    BACKGROUND: Traditional breeding programs consider an average pairwise kinship between sibs. Based on pedigree information, the relationship matrix is used for genetic evaluations disregarding variation due to Mendelian sampling. Therefore, inbreeding and kinship coefficients are either over or underestimated resulting in reduction of accuracy of genetic evaluations and genetic progress. Single nucleotide polymorphism (SNPs) can be used to estimate pairwise kinship and individual inbreeding more accurately. The aim of this study was to optimize the selection of markers and determine the required number of SNPs for estimation of kinship and inbreeding. RESULTS: A total of 1,565 animals from three commercial pig populations were analyzed for 28,740 SNPs from the PorcineSNP60 Beadchip. Mean genomic inbreeding was higher than pedigree-based estimates in lines 2 and 3, but lower in line 1. As expected, a larger variation of genomic kinship estimates was observed for half and full sibs than for pedigree-based kinship reflecting Mendelian sampling. Genomic kinship between father-offspring pairs was lower (0.23) than the estimate based on pedigree (0.26). Bootstrap analyses using six reduced SNP panels (n = 500, 1000, 1500, 2000, 2500 and 3000) showed that 2,000 SNPs were able to reproduce the results very close to those obtained using the full set of unlinked markers (n = 7,984-10,235) with high correlations (inbreeding r > 0.82 and kinship r > 0.96) and low variation between different sets with the same number of SNPs. CONCLUSIONS: Variation of kinship between sibs due to Mendelian sampling is better captured using genomic information than the pedigree-based method. Therefore, the reduced sets of SNPs could generate more accurate kinship coefficients between sibs than the pedigree-based method. Variation of genomic kinship of father-offspring pairs is recommended as a parameter to determine accuracy of the method rather than correlation with pedigree-based estimates. Inbreeding and kinship coefficients can be estimated with high accuracy using ≥2,000 unlinked SNPs within all three commercial pig lines evaluated. However, a larger number of SNPs might be necessary in other populations or across lines
    corecore