HORTIN II Co Innovation Programme

Towards cost effective, high quality value chains

Strengthening fresh rambutan supply chain by MA packaging

HORTIN-II Mission Report nr. 32

> Jeroen Knol (Wageningen UR, AFSG)
> Maxence Paillart (Wageningen UR, AFSG)
> Sri Yuliani (ICAPRD)

The purpose of the HORTIN-II programme is to contribute to the development of cost effective high quality value chains for vegetables and fruits. Among others this can be achieved when technology development takes place in close collaboration between public institutions, farmers and private companies.

On the Indonesian side the programme is carried out by the Indonesian Centre for Horticultural Research and Development (ICHORD), Jakarta, with the Indonesian Vegetable Research Institute (IVEGRI), Lembang, and the Indonesian Centre for Agricultural Postharvest Research and Development (ICAPRD) in Bogor.

In the Netherlands the Agricultural Economics Research Institute (AEI), Den Haag, the Agrotechnology and Food Sciences Group (ASFG), Wageningen, Applied Plant Research (APR), Lelystad, and WUR-Greenhouse Horticulture (WUR-GH), Bleiswijk, all partners in Wageningen University and Research centre, are involved in the programme.

Addresses:

Indonesian Centre for Horticultural Research and Development (ICHORD)
Address : JI. Ragunan 29A, Pasarminggu, Jakarta 12520, Indonesia
Tel. : +62 217890990
Fax : +62217805135
E-mail : pushor@rad.net.id or pushorti@yahoo.com
Internet : www.litbanghortikultura.go.id
Indonesian Vegetable Research Institute (IVEGRI)
Address : J. Tangkuban Perahu 517, Lembang-Bandung 40391, West Java, Indonesia
Tel. : +62 222786245
Fax : +62 222786416
E-mail : dir_ivegri@balits.org or balitsa@balitsa.org
Internet : www.balitsa.org
Indonesian Centre for Agricultural Postharvest Research and Development (ICAPRD)
Address : Kampus Penelitian Pertanian, Cimanggu, Bogor 16114, West Java, Indonesia
Tel. : + 62251321762
Fax : + 62251350920
E-mail : bb_pascapanen@litbang.deptan.go.id or bb_pascapanen@yahoo.com
Internet : www.pascapanen.litbang.deptan.go.id
Agricultural Economics Research Institute (AEI)
Address : Alexanderveld 5, Den Haag, The Netherlands
PO Box 29703, 2502 LS Den Haag, The Netherlands
Tel. : +31703358330
Fax : +31703615624
E-mail : informatie.lei@wur.nl
Internet : www.lei.wur.n|
Agrotechnology and Food Sciences Group (ASFG)
Address: Building 118, Bornsesteeg 59, Wageningen, The Netherlands
PO Box 17, 6700 AA, Wageningen, The Netherlands
Tel. : +31317480084
Fax : +31317483011
E-mail : info.asfg@wur.nl
Internet : www.asfg.wur.n|
Applied Plant Research (APR)
AGV Research Unit
Address : Edelhertweg 1, Lelystad, The Netherlands
: PO Box 430, 8200 AK Lelystad, The Netherlands
Tel. : +31 320291111
Fax : +31320230479
E-mail : infoagv.ppo@wur.nl
Internet : www.ppo.wur.nl

WUR-Greenhouse Horticulture (WUR-GH)

Address	$:$	Violierenweg 1, Bleiswijk, The Netherlands
	\vdots	PO Box 20, 2665 ZG Bleiswijk, The Netherlands
Tel.	\vdots	+31317485606
Fax	\vdots	+31105225193
E-mail	\vdots	glastuinbouw@wur.nl
Internet	\vdots	$\underline{\text { www.glastuinbouw.wur.nl }}$

The HORTIN-II programme is sponsored by the Indonesian Agency for Agricultural Research and Development of the Ministry of Agriculture, Indonesia, and by the Ministry of Agriculture, Nature and Food Quality of the Netherlands (under project nr. BO-10-006-031.02).
© 2009 AFSG, Wageningen, The Netherlands.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form of by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of AFSG, Wageningen, The Netherlands. AFSG, Wageningen, The Netherlands, take no responsibility for any injury or damage sustained by using data from this publication.

Programme Team

	Indonesia	The Netherlands
Programme management	Dr. Yusdar Hilman, Director ICHORD Telephone +62 217890990 Fax +62 217805135 E-mail: YHILMAN@INDO.NET.ID	Dr. Arij Everaarts, APR, General management Telephone +31 320291671 Fax +31320230479 E-mail: ARIJ.EVERAARTS@WUR.NL Mrs. Myrtille Danse, AEI, Supply Chain Management
Sweet pepper pilot project	Dr. Nikardi Gunadi, IVEGRI Telephone +62222786245 Fax +62 222786416 E-mail: NGUNADI@.BDG.CENTRIN.NET.ID	Mrs. Marieke van der Staaij, Ruud Maaswinkel, WUR-Greenhouse Horticulture Telephone +31 317485537 Fax +31 105225193 E-mail: MARIEKE.VANDERSTAAIJ@WUR.NL RUUD.MAASWINKEL@WUR.NL
Shallot pilot project	Dr. Rofik Sinung Basuki, IVEGRI Telephone +62 222786245 Fax +62222786416 E-mail: ROFIK@HOTMAIL.COM	Lubbert van den Brink, APR Telephone +31320291353 Fax +31320230479 E-mail: LUBBERT.VANDENBRINK@WUR.NL
Hot pepper pilot project	Dr. Witono Adiyoga, IVEGRI Telephone +62 222786245 Fax +62 222786416 E-mail: VICIANTI@YAHOO.CO.ID	Herman de Putter, APR Telephone +31 320291614 Fax: +31320230479 E-mail: HERMAN.DEPUTTER@WUR.NL
Supply chain management	Dr. Witono Adiyoga, Dr. Nikardi Gunadi, Dr Rofik Sinung Basuki, IVEGRI	Mrs. Myrtille Danse, Mrs. Rolien Wiersinga, Mrs. Olga van der Valk, AEI Telephone +31 703358341 Fax +31703615624 E-mail: MYRTILLE.DANSE@WUR.NL ROLIEN.WIERSINGA@WUR.NL OLGA.VANDERVALK@WUR.NL
Quantitative Economic Analysis	Dr. Witono Adiyoga, IVEGRI	Marcel van der Voort, APR Telephone +31320291312 Fax +31320230479 E-mail: MARCEL.VANDERVOORT@WUR.NL
Fruit supply chains	Dr. Sri Yuliani, ICAPRD Telephone +62 251321762 Fax +62251350920 E-mail: S.YULIANI@GMALL.COM	Dr. Jeroen Knol, ASFG Telephone +31 317480177 Fax +31317483011 E-mail: JEROEN.KNOL@WUR.NL

CONTENTS

Executive summary7

1. Introduction 9
1.1. Context and purpose of mission 9
1.2. Terms of reference mission 9
1.3. This report 9
2. Summaries and action points per meeting 11
2.1. Meeting with ICAPRD 11
2.2. Thematic seminar 'Postharvest Science and Technology - Towards Future Food Trends' 11
3. Project proposal and protocol - $1^{\text {st }}$ draft versions 13
3.1. Local market test (Indonesia) 13
3.1.1. Rambutan cv. Binjai 13
3.1.2. Rambutan cv. Lebak Bulus 13
3.2. Second stage: transport trials 13
3.2.1. Air transport test (Indonesia \rightarrow Netherlands) 13
3.2.2. Pre-test for sea transport: CA test (Netherlands) 14
3.3. Planning 15
Annex I. Project Description: Product diversification \& quality improvement Rambutan 17
Annex II. Presentation Wageningen UR at Thematic Seminar 'Posthavest Science and Technology - Towards Future Food Trends', Bogor, 13 August 2009 19

Executive summary

First experiments have shown that the shelf life of rambutan can be greatly extended by these relatively cheap and proven processes, making them ideal for implementation in Indonesia. Processed rambutan can be stored at ambient temperatures $\left(30^{\circ} \mathrm{C}\right)$ for 2 months. Rambutan juice can have a storage life up to 4 months.

Experiments conducted by ICAPRD and AFSG have shown that by choosing optimal packaging and controlling the cold chain, shelf life of 21 days can be achieved. The packaging materials should answer to the following requirements:

- Relative humidity inside the bag around 95%.
- Condensation controlled by Antifog material or water free absorber
- Permeability properties of packaging material should avoid any anaerobic condition and assure a carbon dioxide concentration between 9 and 12\%
- As the packaging facilities at the exporter location are non-existing or extremely limited, the MAP packaging shouldn't require high-tech equipment. The optimum gas concentrations should be reached by the natural respiration rate of the rambutan fruits.

Good handling of the products is necessary to assure the optimal initial quality and the maximum shelf life of rambutan. Gentle handling during harvest and transport minimizes mechanical damages and avoids any enzymatic decays of fruits.

1. Introduction

1.1. Context and purpose of mission

The purpose of the current mission is to discuss the results of the first experiments on processing and packaging of rambutan with the Indonesian project partners and to set-up and plan the combined experiment consisting and export trial and MA/CA packaging experiments.

A summary of the Terms of Reference of this mission is presented below and these excerpts were also used as official introduction of the mission team with Indonesian partners.

Two tracks for strengthening rambutan supply chains were jointly identified and are to be discussed and its feasibility evaluated with Indonesian counterparts during this mission;

1. Processing routes for preservation of rambutan for the development of alternative product market combinations and to create new and off-season markets for processed rambutan.
2. Development of Modified Atmosphere packaging methods for improved quality of rambutan and prolonged shelf life at export and high-end domestic markets.

1.2. Terms of reference mission

The objectives of the mission are the following (see Annex I for project desciption):

- To discuss research institutes' results on rambutan experiments on processing and packaging;
- Screen \& discuss opportunities for rambutan supply chain development \& product market innovations and to explore opportunities for cooperation with Indonesian producers and exporters in the export trial;
- Make arrangements for follow up experimental and applied research activities

The mission was conducted in week 33, 2009 (9-15 Augustus 2009).

1.3. This report

Only major conclusions and key observations are reported in this mission report. Action points are summarized, especially who should take which action and when. Most important the tentative proposal for the export and MA/CA packaging experiments for rambutan are presented.

Wageningen, Bogor, August 2009

2. Summaries and action points per meeting

2.1. Meeting with ICAPRD

Organization \& Persons met	ICAPRD (Indonesian Centre for Agricultural Postharvest Research and Development) dr. Wisnu Broto (director), dr. Sri Yuliani (international cooperation and relations), dr. Setyadjit and staff
Date	Wednesday afternoon, August 12, 2009, Bogor
Discussion Key observations	- First experiments have shown that the shelf life of rambutan can be greatly extended by these relatively cheap and proven processes, making them ideal for implementation in Indonesia. Processed rambutan can be stored at ambient temperatures $\left(30^{\circ} \mathrm{C}\right)$ for 2 months. Rambutan juice can have a storage life up to 4 months. - Experiments conducted by ICAPRD and AFSG have shown that by choosing optimal packaging and controlling the cold chain, shelf life of 21 days can be achieved. The packaging materials should answer to the following requirements: Relative humidity inside the bag around 95%. - Condensation controlled by Antifog material or water free absorber - Permeability properties of packaging material should avoid any anaerobic condition and assure a carbon dioxide concentration between 9 and 12% - As the packaging facilities at the exporter location are non-existing or extremely limited, the MAP packaging shouldn't require high-tech equipment. The optimum gas concentrations should be reached by the natural respiration rate of the rambutan fruits. - Good handling of the products is necessary to assure the optimal initial quality and the maximum shelf life of rambutan. Gentle handling during harvest and transport minimizes mechanical damages and avoids any enzymatic decays of fruits.
Action points	1. Sri Yuliani will send the results of their experiments and send an updated set-up for the export trial 2. Jeroen Knol will arrange the input from Wageningen UR for this trial

2.2. Thematic seminar 'Postharvest Science and Technology - Towards Future Food Trends'

Organization	IAARD
Date	Thursday afternoon, August 13, 2009, Bogor
Programme	14.00-14.45 - Keynote Speech Minister of Agriculture "Indonesian Food Development Policy 2014-2025" Dr. Ahmad Dimyati, DG of Horticulture 14.45-15.15 - Panel Discussion (Chairman: Food Review Indonesia Magazine) - Food Product Development: Towards Cost Effective, High Quality Value Chains" Wageningen University (see Annex II)

3. Project proposal and protocol $-1^{\text {st }}$ draft versions

In order to contribute to the development of tropical fruit sector in Indonesia, new packaging concepts should be investigated to increase shelf life of these fruit. The extension of the shelf life will assure easier and longer distribution radius. The economical fall-out can have significant effects on the Indonesian fruit chain. The present study is processed to determine the potential opportunities of using modified atmosphere packaging for Rambutan fruits. The literature reports that modified atmosphere packaging has a positive effect on the quality of the rambutan fruit and an extension of the shelf life was observed. In order to determine if this packaging method is practical at small-scale farmer in Indonesia, the present set-up was established. Cooperation's with the farmer/cooperative and local research institutes are indispensable in order to determine the limits and further expectations of this technique on the export market and local market.

3.1. Local market test (Indonesia)

3.1.1. Rambutan cv. Binjai

Materials:

Rambutan cv. Binjai from east java (Blitar), will be packed and send them to Supermarketfruit shops in Jakarta, will be for sale to the consumers. In parallel to the consumer acceptance test, Rambutan cv. Lebak Bulus will be graded, packed and stored under at room temperature and cold storage $\left(10^{\circ} \mathrm{C}\right)$ to determine the shelf life period using MAP packaging.

Methods:

Rambutan CV. Binjai will be detached from the branch, to obtain Ca .400 kg , washed, leave them dry, graded, MAP packed; place in the box, sending to Jakarta in refrigerated box at $15^{\circ} \mathrm{C}$ for 24 h . At Laboratory of ICAPRD 6 box will be separated and placed at $7^{\circ} \mathrm{C}$ for referenced storage. Sampling time will be $1,2,3,4$ weeks. Analyses for freshness scoring system.

The rest of the box will be distributed in supermarketfruit shops (place will be determined); for preference test and market test for consumer. At the end there will be economic evaluation and freshness (see previous preschedule). Sampling will be made weekly for freshness.

3.1.2. Rambutan cv. Lebak Bulus

In order to compare the shelf life of the Rambutan sent to the Netherlands (by plane), a shelf life test is also needed in Indonesia as reference. We recommend using only one batch of Rambutan cv Lebak Bulus for the reference test (described below) and the transport trial test.

Rambutan cv Lebak Bulus will be detached from the branch, to obtain Ca .30 kg , washed, leave them dry, graded, MAP packed; place in the box, stored at $10^{\circ} \mathrm{C}$ at Laboratory of ICAPRD. Sampling time will be $1,2,3,4$ weeks. Analyses for freshness scoring system (2 times per week for 4 weeks).

3.2. Second stage: transport trials

3.2.1. Air transport test (Indonesia \rightarrow Netherlands)

The air transport will permit to send fresh Rambutan (maximum 2 days old after harvesting) to the Netherlands. The packaging moment will be studied within this test. One part of the Rambutan batch is packed under MAP (modified atmosphere packaging) in Indonesia and send within this packaging by plane to the Netherlands. The
second part of the batch is sent unpacked by plane. Once the importer receives the Rambutans, the Rambutans are packed under MAP.

The bag packaging, also called MAP (modified atmosphere packaging), assures optimum storage conditions during distributions and selling processes. MAP process requires a perfect control of the distribution temperature in order to assure quality retention for 2 to 3 weeks on the European market.

The 2 cultivars will be tested for the air transport. Both of them will be investigated for shelf life determination and for preference test by the importer. The Rambutans of the 2 cultivars are harvested on the same days than the ones destined for the first stage test. They are prepared and packed according to the standard protocol developed in the first stage experiment (Special attention should be given to the grading and sorting out phases in the preparation of the products).

- Per cultivar, 24 MAP bags are prepared in Indonesia and 12 kg of Rambutan are send un-packed (within cool box) are sent by plane to the Netherlands.
- Exporter and importer are needed to facilitate the administration and transport processes.
- Temperature during transport will be followed thanks to temperature loggers placed in the box.
- 24 bags and 12 kg of each cultivar of Rambutan are needed for the shelf life test. 2 boxes of each cultivar are also needed for the evaluation done by the importer.
- Samples are stored at $10^{\circ} \mathrm{C}$ until evaluation
- Evaluation of freshness 2 times of week (see previous pre-schedule)
- Cost, preparation and transport to Netherlands will bear by Hortin
- 2 boxes will be sent to private company: Comments from an importer in The Netherlands : 1 (like), (2) rather dislike, (3) dislike. Willing to buy : (yes/no), Quantity : Months: What price per kg.

3.2.2. Pre-test for sea transport: CA test (Netherlands)

In the last test proposal, it is proposed to send rambutan in sea reefer container under Control Atmosphere (CA) conditions. Knowing the long transport period needed (4 to 5 weeks Maerks Line container transport), we recommend to first determine the best CA for the two cultivars and determine the maximum storage period of the fruit. Fruit will be harvested, graded, cleaned and packed for air transport at the production area. The fruit will be sent by plane to the Netherlands (importer logistic should be used to facilitate the tax and sanitary controls at the airport). Optimum CA conditions for both cultivars will be investigated at A\&F facilities at one temperature. The recommended temperature for Rambutan is $10^{\circ} \mathrm{C}$.

The Rambutan will be stored for 4 weeks under several oxygen and carbon dioxide concentrations with high relative humidity ($90-95 \%$) and ethylene absorber (see matrix below)

Cultivars	Oxygen, [\%]	Carbon dioxide, [\%]	Total, [kilogram]
Binjai	3	7	4
	3	12	4
	5	7	4
	5	12	4
	1	15	4
	1	18	4
Total Binjai:			24+2
Lebak Bulus	3	7	4
	3	12	4
	5	7	4
	5	12	4
	1	15	4
	1	18	4
Total Lebak Bulus			$24+2$

Once the storage period under CA conditions is ready, one part of the fruits are judged to determine the quality loss due to CA storage, and the second part of the fruits are packed under Modified atmosphere packaging and stored 10 extra days at $10^{\circ} \mathrm{C}$. Fruits packed with MAP are evaluated at different interval during the storage period.

The evaluation follows the standard evaluation protocol developed during the visit in Indonesia between experts of ICAPRD and A\&F expert.
26 kg per cultivar are needed for this test.

3.3. Planning

Last week of January (22-29 January)
Saturday $23^{\text {rd }}$ January:

- Arrival in Indonesia

Monday $25^{\text {th }}$ January:

- Visit of Rambutan production area
- Discussion over grading and sorting out method
- Last logistic preparation

Tuesday $26^{\text {th }}$ January:

- Preparation of the samples

Wednesday $27^{\text {th }}$ January:

- Initial evaluation
- Send samples to supermarket for the local experiment and to the exporter

Thursday 28 ${ }^{\text {th }}$ January:

- Visit of the supermarket for initial evaluation by them

Friday 29th January:

- Travelling back to the Netherlands

Annex I. Project Description: Product diversification \& quality improvement Rambutan

Horticultural Research Co-operation between Indonesia and The Netherlands - HORTIN-II

1. Project title : Product diversification and quality improvement Rambutan
2. Project leaders : Jeroen Knol, AFSG, Wageningen UR (Netherlands)

Sri Yuliani, Indonesian Centre for Agricultural Post Harvest Research and Development, Bogor
3. Executing agencies : AFSG, ICAPRD
4. Abstract
5. Participating organisations and companies ${ }^{1}$:

- PT Masindo Mitra Mandiri
- PT Agrosari Sentraprima, Medan
- Directorate General (DG) Horticultural Fruit Crops, Jakarta
- HPSP (Horticultural Partnership Support Program)
- Fresh Studio Innovations Asia

6. Objectives:

Long-term objectives:
To contribute to the development of the fruit sector in Indonesia and generate employment and income for fruit producers by optimising the supply chain for fruit products.

Short-term objectives:

- To evaluate possible processing routes for preservation of rambutan for the development of alternative product market combinations and to create new and off season markets for processed rambutan
- To develop Modified Atmosphere packaging methods for improved quality of rambutan at export markets

7. Project description:

In this project, the following activities will be conducted:

- Reporting of project results: for the most promising processing options, including modified atmosphere treatment a short information sheet will be made, explaining the method, the potential impact for rambutan processing, the results of the first feasibility studies, the main advantages and disadvantages of the processing option, related to potential application in Indonesia.
- Feed back on short information sheets: local bottlenecks and potential problems by introduction and implementation in Indonesia (Indonesian partners).
- Joint workshops for implementation of results.

8. Project methodology:

- Joint project planning with stakeholders; creating commitment with local private parties and public partners
- Demonstrations and pilot with companies including economic analysis

[^0]- Strengthening of producers / farmers associations

9. Expected outputs and impacts:

	Output	Impact		
2010	-Experiments in collaboration with research \& private partners in Indonesia and The Netherlands aiming at practical implementation of processing and MA packaging (continuation of work done in 2008-2009)	First step towards implementation of optimising supply chain		
- Joint workshop			\quad - Knowledge transfer	-
:---				

10. Training and technology transfer/knowledge exchange:

Year	Subject	Participant Organisation	Location	Organisation involved
2010	-Rambutan processing packaging: and Leaflets knowledge transfer - Rambutan processing and packaging: workshop\quad an	- A\&F/ICAPRD	- Indonesia	- A\&F - Indonesian partners

11. Work plan 2010:

| Time | Activity | Deliverables |
| :--- | :--- | :--- | :--- |
| 2010 | - Feed back on short information sheets: local bottlenecks and potential
 problems by introduction and implementation in Indonesia
 (Indonesian partners). | - Leaflets |
| | - Selection of most interesting improvements in processing and optimisation
 of supply chain | - Report |

Annex II. Presentation Wageningen UR at Thematic Seminar 'Posthavest Science and Technology - Towards Future Food Trends’, Bogor, 13 August 2009

Applications of HPP: ready to eat meals	HP sterilisation
Maple leaf, Canada Carretilla, Spain	
	Lis
Product quality research	Product quality: co
Broad range of products evaluated Some examples: Flavour of fresh basil Firmness of green beans	Effects on colour largely dependent on product
	Orange, red colours of vegetables: well preserved - Green colours: change towards olive green colour
	Lix
HP sterilisation	Other relevant novel technologies
- Interesting results with respect to product quality, however: - Research needed: - Safety of technology: which conditions necessary for inactivation of all spores - Effects on quality and shelf life of products - Legislation: no approval - Equipment: pilot scale available	- PEF: pulsed electric field treatment - Volumetric heating: ohmic heating
Ls,	Lick
Pulsed Electric Fields (PEF)	Ohmic heating
- Low thermal pasteurization method - Membrane electroporation by short high electric field pulses $\text { - 2-300 } \mu \mathrm{s}$ - $20-60 \mathrm{kV} / \mathrm{cm}$ - Pasteurization of fluid foods - Commercial equipment available - Legislation: no approval - Pilot equipment at WUR	- Direct heating of product - Electric energy is dissipated into heat - Continuous - Fast heating - Volumetric heating - Product with particles - Aseptic filling necessary - Pilot equipment available at CTCPA, Avignon


```
Three tracks
Processing opportunities and opportunities for new product market combinations (for processed rambutan)
- Opportunities for Modified Atmosphere Packaging (MAP) to extend the export and transport opportunities for fresh rambutan.
- Feasible opportunities to spread the harvest of rambutan over a longer period or to influence the time of flowering and ripening of rambutan
```


For more information:

Wageningen University and Research Center (http://www.wur.nl) Agrotechnology \& Food Sciences Group (http://www.afsg.wur.nl) Food Technology Center (http://www.ftc.wur.nl)
Dr. Ir. Jeroen Knol (jeroen.knol@wur.nl)

H.

[^0]: ${ }^{1}$ This is a gross list of partners and contact persons per potential partner have been identified. Depending on the opportunities for and the mode of cooperation a selection of partners will be made.

