1,839 research outputs found
Generation of uncertainty boundary for ARCASONDE 1A temperature sensor system Progress report
Computation of error bars for temperature profiles from thermistor type meteorological rocksond
Cohomotopy sets of projective planes
We set F=R(real), C(complex), H(quaternion), O(octonian) and d=dimRF. We denote by FP² the F-projective plane. The purpose of this note is to determine the cohomotopy set Ďâż(FP²) = [FP², Sâż]. Let h=h(F): S²dâťÂšâSd be the Hopf map. Then we have a cell structure FP²=SdUhâŻÂ˛d and a cofiber sequence: S²dâťÂš hâSd- iâFP² pâS²d âhâSdâşÂšâ..., (1) where i is the inclusion map, p = p(F) is a map pinching Sd to one point and âh is the reduced suspension of h. Our result is given by the table on page 7. Its essence is stated as follows.Article俥ĺˇĺ¤§ĺŚçĺŚé¨ç´čŚ 33(1): 1-7(1998)departmental bulletin pape
Electronic phase diagram of the layered cobalt oxide system, LixCoO2 (0.0 <= x <= 1.0)
Here we report the magnetic properties of the layered cobalt oxide system,
LixCoO2, in the whole range of Li composition, 0 <= x <= 1. Based on
dc-magnetic susceptibility data, combined with results of 59Co-NMR/NQR
observations, the electronic phase diagram of LixCoO2 has been established. As
in the related material NaxCoO2, a magnetic critical point is found to exist
between x = 0.35 and 0.40, which separates a Pauli-paramagnetic and a
Curie-Weiss metals. In the Pauli-paramagnetic regime (x <= 0.35), the
antiferromagnetic spin correlations systematically increase with decreasing x.
Nevertheless, CoO2, the x = 0 end member is a non-correlated metal in the whole
temperature range studied. In the Curie-Weiss regime (x >= 0.40), on the other
hand, various phase transitions are observed. For x = 0.40, a susceptibility
hump is seen at 30 K, suggesting the onset of static AF order. A magnetic jump,
which is likely to be triggered by charge ordering, is clearly observed at Tt =
175 K in samples with x = 0.50 (= 1/2) and 0.67 (= 2/3), while only a tiny kink
appears at T = 210 K in the sample with an intermediate Li composition, x =
0.60. Thus, the phase diagram of the LixCoO2 system is complex, and the
electronic properties are sensitively influenced by the Li content (x).Comment: 29 pages, 1 table, 9 figure
Impact of lithium composition on the thermoelectric properties of the layered cobalt oxide system LixCoO2
Thermoelectric properties of the layered cobalt oxide system LixCoO2 were
investigated in a wide range of Li composition, 0.98 >= x >= 0.35. Single-phase
bulk samples of LixCoO2 were successfully obtained through electrochemical
deintercalation of Li from the pristine LiCoO2 phase. While LixCoO2 with x >=
0.94 is semiconductive, the highly Li-deficient phase (0.75 >= x >= 0.35)
exhibits metallic conductivity. The magnitude of Seebeck coefficient at 293 K
(S293K) significantly depends on the Li content (x). The S293K value is as
large as +70 ~ +100 uV/K for x >= 0.94, and it rapidly decreases from +90 uV/K
to +10 uV/K as x is lowered within a Li composition range of 0.75 >= x >= 0.50.
This behavior is in sharp contrast to the results of x <= 0.40 for which the
S293K value is small and independent of x (+10 uV/K), indicating that a
discontinuous change in the thermoelectric characteristics takes place at x =
0.40 ~ 0.50. The unusually large Seebeck coefficient and metallic conductivity
are found to coexist in a narrow range of Li composition at about x = 0.75. The
coexistence, which leads to an enhanced thermoelectric power factor, may be
attributed to unusual electronic structure of the two-dimensional CoO2 block.Comment: 29 pages, 1 table, 8 figure
Electric-field dependent spin diffusion and spin injection into semiconductors
We derive a drift-diffusion equation for spin polarization in semiconductors
by consistently taking into account electric-field effects and nondegenerate
electron statistics. We identify a high-field diffusive regime which has no
analogue in metals. In this regime there are two distinct spin diffusion
lengths. Furthermore, spin injection from a ferromagnetic metal into a
semiconductor is enhanced by several orders of magnitude and spins can be
transported over distances much greater than the low-field spin diffusion
length.Comment: 5 pages, 3 eps figure
Spin diffusion in doped semiconductors
The behavior of spin diffusion in doped semiconductors is shown to be
qualitatively different than in undoped (intrinsic) ones. Whereas a spin packet
in an intrinsic semiconductor must be a multiple-band disturbance, involving
inhomogeneous distributions of both electrons and holes, in a doped
semiconductor a single-band disturbance is possible. For n-doped nonmagnetic
semiconductors the enhancement of diffusion due to a degenerate electron sea in
the conduction band is much larger for these single-band spin packets than for
charge packets, and can exceed an order of magnitude at low temperatures even
for equilibrium dopings as small as 10^16 cm^-3. In n-doped ferromagnetic and
semimagnetic semiconductors the motion of spin packets polarized antiparallel
to the equilibrium carrier spin polarization is predicted to be an order of
magnitude faster than for parallel polarized spin packets. These results are
reversed for p-doped semiconductors.Comment: 8 pages, 4 figure
Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean
From 2001 to 2006, 71 pop-up satellite archival tags (PSATs)
were deployed on five species of pelagic shark (blue shark [Prionace glauca]; shortfin mako [Isurus oxyrinchus]; silky shark [Carcharhinus falciformis]; oceanic whitetip shark
[C. longimanus]; and bigeye thresher [Alopias superciliosus]) in the central Pacific Ocean to determine species-specific movement patterns and survival rates after release from longline fishing gear. Only a single postrelease mortality could be unequivocally documented:
a male blue shark which succumbed seven days after release.
Meta-analysis of published reports and the current study (n=78 reporting PSATs) indicated that the summary
effect of postrelease mortality for blue sharks was 15% (95% CI, 8.5â25.1%) and suggested that catch-and-release
in longline fisheries can be a viable management tool to protect parental biomass in shark populations. Pelagic sharks displayed species-specific depth and temperature ranges, although with significant individual temporal and spatial variability in vertical movement patterns, which
were also punctuated by stochastic events (e.g., El NiĂąo-Southern Oscillation). Pelagic species can be separated
into three broad groups based on daytime temperature preferences by using the unweighted pair-group method with arithmetic averaging clustering on a Kolmogorov-Smirnov
Dmax distance matrix: 1) epipelagic species (silky and oceanic whitetip sharks), which spent >95% of their
time at temperatures within 2°C of sea surface temperature; 2) mesopelagic-I species (blue sharks and shortfin makos, which spent 95% of their time at temperatures from 9.7°
to 26.9°C and from 9.4° to 25.0°C, respectively; and 3) mesopelagic-II species (bigeye threshers), which spent 95% of their time at temperatures from 6.7° to 21.2°C. Distinct
thermal niche partitioning based on body size and latitude was also evident within epipelagic species
Spin Precession and Oscillations in Mesoscopic Systems
We compare and contrast magneto-transport oscillations in the fully quantum
(single-electron coherent) and classical limits for a simple but illustrative
model. In particular, we study the induced magnetization and spin current in a
two-terminal double-barrier structure with an applied Zeeman field between the
barriers and spin disequilibrium in the contacts. Classically, the spin current
shows strong tunneling resonances due to spin precession in the region between
the two barriers. However, these oscillations are distinguishable from those in
the fully coherent case, for which a proper treatment of the electron phase is
required. We explain the differences in terms of the presence or absence of
coherent multiple wave reflections.Comment: 9 pages, 5 figure
Spin dynamics in high-mobility two-dimensional electron systems
Understanding the spin dynamics in semiconductor heterostructures is highly
important for future semiconductor spintronic devices. In high-mobility
two-dimensional electron systems (2DES), the spin lifetime strongly depends on
the initial degree of spin polarization due to the electron-electron
interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an
effective out-of-plane magnetic field and thus reduces the spin-flip rate. By
time-resolved Faraday rotation (TRFR) techniques, we demonstrate that the spin
lifetime is increased by an order of magnitude as the initial spin polarization
degree is raised from the low-polarization limit to several percent. We perform
control experiments to decouple the excitation density in the sample from the
spin polarization degree and investigate the interplay of the internal HF field
and an external perpendicular magnetic field. The lifetime of spins oriented in
the plane of a [001]-grown 2DES is strongly anisotropic if the Rashba and
Dresselhaus spin-orbit fields are of the same order of magnitude. This
anisotropy, which stems from the interference of the Rashba and the Dresselhaus
spin-orbit fields, is highly density-dependent: as the electron density is
increased, the kubic Dresselhaus term becomes dominant and reduces the
anisotropy.Comment: 13 pages, 6 figure
- âŚ