1,831 research outputs found

    Refined control of CRISPR-Cas9 gene editing in Clostridium sporogenes: the creation of recombinant strains for therapeutic applications

    Get PDF
    Despite considerable clinical success, the potential of cancer immunotherapy is restricted by a lack of tumour-targeting strategies. Treatment requires systemic delivery of cytokines or antibodies at high levels to achieve clinically effective doses at malignant sites. This is exacerbated by poor penetration of tumour tissue by therapeutic antibodies. High-grade immune-related adverse events (irAEs) occur in a significant number of patients (5-15%, cancer- and therapeutic-dependent) that can lead to lifelong issues and can exclude from treatment patients with pre-existing autoimmune diseases. Tumour-homing bacteria, genetically engineered to produce therapeutics, is one of the approaches that seeks to mitigate these drawbacks. The ability of Clostridium sporogenes to form spores that are unable to germinate in the presence of oxygen (typical of healthy tissue) offers a unique advantage over other vectors. However, the limited utility of existing gene editing tools hinders the development of therapeutic strains. To overcome the limitations of previous systems, expression of the Cas9 protein and the gRNA was controlled using tetracycline inducible promoters. Furthermore, the components of the system were divided across two plasmids, improving the efficiency of cloning and conjugation. Genome integrated therapeutic genes were assayed biochemically and in cell-based functional assays. The potency of these strains was further improved through rationally-conceived gene knock-outs. The new system was validated by demonstrating the efficient addition and deletion of large sequences from the genome. This included the creation of recombinant strains expressing two pro-inflammatory cytokines, interleukin-2 (IL-2) and granulocyte macrophage-colony stimulating factor (GM-CSF), and a pro-drug converting enzyme (PCE). A comparative, temporal in vitro analysis of the integrant strains and their plasmid-based equivalents revealed a substantial reduction of cytokine activity in chromosome-based constructs. To compensate for this loss, a 7.6 kb operon of proteolytic genes was deleted from the genome. The resultant knock-out strains showed an 8- to 10-fold increase in cytokine activity compared to parental strains

    Making a symbolic gesture: a qualitative examination of self-immolation in Iran

    Get PDF
    Self-immolation is one of the most dramatic methods of committing suicide. Some regions in Iran have a high prevalence of suicide by this method. This study aims to understand and explore the experience of self-immolated women in Iran. Twenty women have interviewed in the burns centers of three different cities immediately the following hospitalization due self-immolation, and the data was analyzed using conventional content analysis. The results were categorized in three main categories: Cultural background and preparing the stage, making a symbolic gesture and events of the day of the incident. Making a symbolic gesture consists of the critical elements of self-immolation, including the presence of significant others, dramatic presentation of misery, bringing an end to misfortune, proof of innocence, creating a sense of compassion or guilt and inspiration from similar cases. The social situation of women in Iran is contributing to self-immolation through feelings of anger and helplessnes

    Antisense epidermal growth factor receptor RNA transfection in human glioblastoma cells down-regulates telomerase activity and telomere length

    Get PDF
    Epidermal growth factor receptor is overexpressed and/or amplified in up to 50% of glioblastomas, suggesting an important role of this gene in glial tumorigenesis and progression. In the present study we demonstrated that epidermal growth factor receptor is involved in regulation of telomerase activity in glioblastoma. Antisense-epidermal growth factor receptor approach was used to inhibit epidermal growth factor receptor expression of glioblastoma U87MG cells. Telomerase activity in antisense-epidermal growth factor receptor cells decreased by up to 54 folds compared with control cells. Moreover, the telomere lengths of antisense-epidermal growth factor receptor cells were shortened. In addition, the tumorigenicity of antisense-epidermal growth factor receptor cells was significantly inhibited. Taken together, there were strong correlations between tumorigenicity and epidermal growth factor receptor expression levels, and between tumorigenicity and telomerase activity. These results provide evidence that epidermal growth factor receptor plays an important role in the regulation of telomerase activity of glioma cells. Our findings provide new insights into both the biological functions of epidermal growth factor receptor and the regulation of telomerase activity. The inhibition of telomerase activity triggered by antisense-epidermal growth factor receptor treatment may reflect yet another mechanism of antisense-epidermal growth factor receptor approach in tumour suppression

    EGFR Kinase Promotes Acquisition of Stem Cell-Like Properties: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma Stem Cells

    Get PDF
    Members of the EGFR/ErbB family of tyrosine kinases are found to be highly expressed and deregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). The ErbB family, including EGFR, has been demonstrated to play key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSCs) which are believed to be responsible for tumor initiation and maintenance. In this study, we investigated the possible role of EGFR as a regulator of “stemness” in HNSCC cells. Activation of EGFR by the addition of EGF ligand or ectopic expression of EGFR in two established HNSCC cell lines (UMSCC-22B and HN-1) resulted in the induction of CD44, BMI-1, Oct-4, NANOG, CXCR4, and SDF-1. Activation of EGFR also resulted in increased tumorsphere formation, a characteristic ability of cancer stem cells. Conversely, treatment with the EGFR kinase inhibitor, Gefinitib (Iressa), resulted in decreased expression of the aforementioned genes, and loss of tumorsphere-forming ability. Similar trends were observed in a 99.9% CD44 positive stem cell culture derived from a fresh HNSCC tumor, confirming our findings for the cell lines. Additionally, we found that these putative cancer stem cells, when treated with Gefitinib, possessed a lower capacity to invade and became more sensitive to cisplatin-induced death in vitro. These results suggest that EGFR plays critical roles in the survival, maintenance, and function of cancer stem cells. Drugs that target EGFR, perhaps administered in combination with conventional chemotherapy, might be an effective treatment for HNSCC

    Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer

    Get PDF
    Both the non-receptor tyrosine kinase, c-Src, and members of the epidermal growth factor (EGF) receptor family are overexpressed in high percentages of human breast cancers. Because these molecules are plasma membrane-associated and involved in mitogenesis, it has been speculated that they function in concert with one another to promote breast cancer development and progression. Evidence to date supports a model wherein c-Src potentiates the survival, proliferation and tumorigenesis of EGF receptor family members, in part by associating with them. Phosphorylation of the EGF receptor by c-SRC is also critical for mitogenic signaling initiated by the EGF receptor itself, as well as by several G-protein coupled receptors (GPCRs), a cytokine receptor, and the estrogen receptor. Thus, c-Src appears to have pleiotropic effects on cancer cells by modulating the action of multiple growth-promoting receptors

    ENIGMA-Sleep:Challenges, opportunities, and the road map

    Get PDF
    Neuroimaging and genetics studies have advanced our understanding of the neurobiology of sleep and its disorders. However, individual studies usually have limitations to identifying consistent and reproducible effects, including modest sample sizes, heterogeneous clinical characteristics and varied methodologies. These issues call for a large-scale multi-centre effort in sleep research, in order to increase the number of samples, and harmonize the methods of data collection, preprocessing and analysis using pre-registered well-established protocols. The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium provides a powerful collaborative framework for combining datasets across individual sites. Recently, we have launched the ENIGMA-Sleep working group with the collaboration of several institutes from 15 countries to perform large-scale worldwide neuroimaging and genetics studies for better understanding the neurobiology of impaired sleep quality in population-based healthy individuals, the neural consequences of sleep deprivation, pathophysiology of sleep disorders, as well as neural correlates of sleep disturbances across various neuropsychiatric disorders. In this introductory review, we describe the details of our currently available datasets and our ongoing projects in the ENIGMA-Sleep group, and discuss both the potential challenges and opportunities of a collaborative initiative in sleep medicine

    S100A7-Downregulation Inhibits Epidermal Growth Factor-Induced Signaling in Breast Cancer Cells and Blocks Osteoclast Formation

    Get PDF
    S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8 expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells and in osteoclast formation

    The Pixel Luminosity Telescope: a detector for luminosity measurement at CMS using silicon pixel sensors

    Get PDF
    The Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 “telescopes”, with eight telescopes installed around the beam pipe at either end of the detector and each telescope composed of three individual silicon sensor planes. The per-bunch instantaneous luminosity is measured by counting events where all three planes in the telescope register a hit, using a special readout at the full LHC bunch-crossing rate of 40 MHz. The full pixel information is read out at a lower rate and can be used to determine calibrations, corrections, and systematic uncertainties for the online and offline measurements. This paper details the commissioning, operational history, and performance of the detector during Run 2 (2015–18) of the LHC, as well as preparations for Run 3, which will begin in 2022

    Search for a vector-like quark Tâ€Č → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark Tâ€Č, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first Tâ€Č search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet Tâ€Č states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a Tâ€Č quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength ÎșT = 0.25 and a relative decay width Γ/MTâ€Č < 5%
    • 

    corecore