1,702 research outputs found

    On Nonlocality, Lattices and Internal Symmetries

    Get PDF
    We study functional analytic aspects of two types of correction terms to the Heisenberg algebra. One type is known to induce a finite lower bound Δx0\Delta x_0 to the resolution of distances, a short distance cutoff which is motivated from string theory and quantum gravity. It implies the existence of families of self-adjoint extensions of the position operators with lattices of eigenvalues. These lattices, which form representations of certain unitary groups cannot be resolved on the given geometry. This leads us to conjecture that, within this framework, degrees of freedom that correspond to structure smaller than the resolvable (Planck) scale turn into internal degrees of freedom with these unitary groups as symmetries. The second type of correction terms is related to the previous essentially by "Wick rotation", and its basics are here considered for the first time. In particular, we investigate unitarily inequivalent representations.Comment: 6 pages, LaTe

    Quantum gravity effects on statistics and compact star configurations

    Full text link
    The thermodynamics of classical and quantum ideal gases based on the Generalized uncertainty principle (GUP) are investigated. At low temperatures, we calculate corrections to the energy and entropy. The equations of state receive small modifications. We study a system comprised of a zero temperature ultra-relativistic Fermi gas. It turns out that at low Fermi energy εF\varepsilon_F, the degenerate pressure and energy are lifted. The Chandrasekhar limit receives a small positive correction. We discuss the applications on configurations of compact stars. As εF\varepsilon_F increases, the radius, total number of fermions and mass first reach their nonvanishing minima and then diverge. Beyond a critical Fermi energy, the radius of a compact star becomes smaller than the Schwarzschild one. The stability of the configurations is also addressed. We find that beyond another critical value of the Fermi energy, the configurations are stable. At large radius, the increment of the degenerate pressure is accelerated at a rate proportional to the radius.Comment: V2. discussions on the stability of star configurations added, 17 pages, 2 figures, typos corrected, version to appear in JHE

    Casimir Effect in the Presence of Minimal Lengths

    Full text link
    It is expected that the implementation of minimal length in quantum models leads to a consequent lowering of Planck's scale. In this paper, using the quantum model with minimal length of Kempf et al \cite{kempf0}, we examine the effect of the minimal length on the Casimir force between parallel plates.Comment: 10 pages, 2 figure

    Harmonic oscillator with minimal length uncertainty relations and ladder operators

    Get PDF
    We construct creation and annihilation operators for harmonic oscillators with minimal length uncertainty relations. We discuss a possible generalization to a large class of deformations of cannonical commutation relations. We also discuss dynamical symmetry of noncommutative harmonic oscillator.Comment: 8 pages, revtex4, final version, to appear in PR

    Modelling CDA mass spectra

    Get PDF
    We present the initial results from a simulation of ion behaviour within Cassini's cosmic dust analyser (CDA) instrument, using an in-house ion dynamics code. This work is to enable and enhance the detailed interpretation of dust impact ionisation mass spectra returned from the Saturnian system. Early work has already provided insights into the properties of the impact plasma in both low- and high-velocity impacts. We find that the isotropic emission of ions from the impact plasma successfully reproduces features seen in flight spectra and that the emitted ions have a higher range of energies (tens to hundreds of eV) than previously reported in some studies. Using these new ion characteristics, we have successfully modelled CDA flight mass spectra

    On the Existence of the Logarithmic Correction Term in Black Hole Entropy-Area Relation

    Get PDF
    In this paper we consider a model universe with large extra dimensions to obtain a modified black hole entropy-area relation. We use the generalized uncertainty principle to find a relation between the number of spacetime dimensions and the presence or vanishing of logarithmic prefactor in the black hole entropy-area relation. Our calculations are restricted to the microcanonical ensembles and we show that in the modified entropy-area relation, the microcanonical logarithmic prefactor appears only when spacetime has an even number of dimensions.Comment: 9 Pages, No Figure

    Twisted Classical Poincar\'{e} Algebras

    Full text link
    We consider the twisting of Hopf structure for classical enveloping algebra U(g^)U(\hat{g}), where g^\hat{g} is the inhomogenous rotations algebra, with explicite formulae given for D=4D=4 Poincar\'{e} algebra (g^=P4).(\hat{g}={\cal P}_4). The comultiplications of twisted UF(P4)U^F({\cal P}_4) are obtained by conjugating primitive classical coproducts by FU(c^)U(c^),F\in U(\hat{c})\otimes U(\hat{c}), where c^\hat{c} denotes any Abelian subalgebra of P4{\cal P}_4, and the universal RR-matrices for UF(P4)U^F({\cal P}_4) are triangular. As an example we show that the quantum deformation of Poincar\'{e} algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincar\'{e} algebra. The interpretation of twisted Poincar\'{e} algebra as describing relativistic symmetries with clustered 2-particle states is proposed.Comment: \Large \bf 19 pages, Bonn University preprint, November 199

    Motivic Serre invariants, ramification, and the analytic Milnor fiber

    Full text link
    We show how formal and rigid geometry can be used in the theory of complex singularities, and in particular in the study of the Milnor fibration and the motivic zeta function. We introduce the so-called analytic Milnor fiber associated to the germ of a morphism f from a smooth complex algebraic variety X to the affine line. This analytic Milnor fiber is a smooth rigid variety over the field of Laurent series C((t)). Its etale cohomology coincides with the singular cohomology of the classical topological Milnor fiber of f; the monodromy transformation is given by the Galois action. Moreover, the points on the analytic Milnor fiber are closely related to the motivic zeta function of f, and the arc space of X. We show how the motivic zeta function can be recovered as some kind of Weil zeta function of the formal completion of X along the special fiber of f, and we establish a corresponding Grothendieck trace formula, which relates, in particular, the rational points on the analytic Milnor fiber over finite extensions of C((t)), to the Galois action on its etale cohomology. The general observation is that the arithmetic properties of the analytic Milnor fiber reflect the structure of the singularity of the germ f.Comment: Some minor errors corrected. The original publication is available at http://www.springerlink.co
    corecore