153 research outputs found

    Estimation of photolysis frequencies from TOMS satellite measurements and routine meteorological observations

    Get PDF
    A study on the estimation of J(O<sup>1</sup>D) and J(NO<sub>2</sub>) photolysis frequencies when limited ground based measurements (or even no measurements at all), are available is presented in this work. Photolysis frequencies can be directly measured by chemical actinometry and filter radiometry or can be calculated from actinic flux measurements. In several meteorological stations, none of the methods above are applicable due to the absence of sophisticated instruments such as actinometers, radiometers or spectroradiometers. In this case, it is possible to calculate photolysis frequencies with reasonable uncertainty using either a) standard meteorological observations, such as ozone, cloud coverage and horizontal visibility, available in various ground based stations, as input for a radiative transfer model or b) satellite observations of solar global irradiance available worldwide, in combination with an empirical method for the conversion of irradiance in photolysis frequencies. Both methods can provide photolysis frequencies with a standard deviation between 20% and 30%. The absolute level of agreement of the retrieved frequencies to those calculated from actual actinic flux measurements, for data from all meteorological conditions, is within ±5% for J(O<sup>1</sup>D) and less than 1% for J(NO<sub>2</sub>) for the first method, while for the second method it rises up to 25% for the case of J(O<sup>1</sup>D) and 12% for J(NO<sub>2</sub>), reflecting the overestimation of TOMS satellite irradiance when compared to ground based measurements of irradiance for the respective spectral regions. Due to the universality of the methods they can be practically applied to almost any station, thus overcoming problems concerning the availability of instruments measuring photolysis frequencies

    Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station

    Get PDF
    Optical and geometrical characteristics of cirrus clouds over Thessaloniki, Greece (40.6° N, 22.9° E) have been determined from the analysis of lidar and radiosonde measurements performed during the period from 2000 to 2006. Cirrus clouds are generally observed in a mid-altitude region ranging from 8.6 to 13 km, with mid-cloud temperatures in the range from −65° to −38°C. The cloud thickness generally ranges from 1 to 5 km and 38{%} of the cases studied have thickness between 2 and 3 km. The retrieval of optical depth and lidar ratio of cirrus clouds is performed using three different methods, taking into account multiple scattering effect. The mean optical depth is found to be 0.31±0.24 and the corresponding mean lidar ratio is 30±17 sr following the scheme of Klett-Fernald method. Sub-visual, thin and opaque cirrus clouds are observed at 3%, 57% and 40% of the measured cases, respectively. A comparison of the results obtained between the three methods shows good agreement. The multiple scattering errors of the measured effective extinction coefficients range from 20 to 60%, depending on cloud optical depth. The temperature and thickness dependencies on optical properties have also been studied in detail. A maximum mid-cloud depth of ~3.5 km is found at temperatures around ~−47.5°C, while there is an indication that optical depth and mean extinction coefficient increases with increasing mid-cloud temperature. A correlation between optical depth and thickness was also found. However, no clear dependence of the lidar ratio values on the cloud temperature and thickness was found

    Optical and geometrical characteristics of cirrus clouds over a mid-latitude lidar station

    No full text
    International audienceOptical and geometrical characteristics of cirrus clouds over Thessaloniki, Greece (40.6°, 22.9°) have been determined from the analysis of lidar and radiosonde measurements performed during the period from 2000 to 2006. Cirrus clouds are generally observed in a mid altitude region ranging from 7 to 12 km, with mid-cloud temperatures in the range from ?65° to ?25°C. A seasonality of cirrus geometrical and temperature properties is found. The cloud thickness ranges from 0.85 to 5 km and 37% of our cases have thickness between 2 and 3 km. The retrieval of cloud's optical depth and lidar ratio is performed using three different methods, taking into account multiple scattering effects. The mean optical depth is found to be 0.3±0.24 and the corresponding mean lidar ratio is 28±17 sr. Sub-visual, thin and opaque cirrus clouds are observed at 7.5%, 51% and 42.5% of the measured cases respectively. The multiple scattering errors of the measured effective extinction coefficients range from 20% to 60% depending on cloud optical depth. A comparison of the results between the three methods shows good agreement. In addition we present the advantages and limitations of each method applied. The temperature and thickness dependencies on optical properties have also been studied in detail. A maximum mid-cloud depth of ~3 km is found at temperatures around ~?45°C while there is an indication that optical depth increases with increasing thickness and mid-cloud temperature. No clear dependence of the lidar ratio values on the cloud temperature and thickness was found

    Inferring Absorbing Organic Carbon Content from AERONET Data

    Get PDF
    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China

    Monitoring of UV spectral irradiance at Thessaloniki (1990?2005): data re-evaluation and quality control

    No full text
    International audienceWe present a re-evaluation and quality control of spectral ultraviolet irradiance measurements from two Brewer spectroradiometers operating regularly at Thessaloniki, Greece. The calibration history of the two instruments was re-examined and data flaws were identified by comparing quasi synchronous measurements. Analysis of the sensitivity of both instruments to variations of their internal temperature revealed that they have temperature coefficients of different sign. These coefficients exhibit small variability during the 15-year period. Using averaged temperature coefficients, we corrected both datasets. Corrections were applied for the angular response error using two different approaches depending on the availability of required ancillary data. The uncertainties associated with the measurements have been estimated and presented. Finally, the two datasets are compared using ratios of irradiance integrals at various bands in the UV, in order to assess any dependencies on the internal instrument temperature, solar zenith angle and wavelength

    Effects of total solar eclipse of 29 March 2006 on surface radiation

    No full text
    International audienceSolar irradiance spectral measurements were performed during a total solar eclipse. The spectral effect of the limb darkening to the global, direct irradiance and actinic flux measurements was investigated. This effect leads to wavelength dependent changes in the measured solar spectra showing a much more pronounced decrease in the radiation at the lower wavelengths. Radiative transfer model results were used for the computation of a correction for the total ozone measurements due to the limb darkening. This correction was found too small to explain the large decrease in total ozone column derived from the standard Brewer measurements, which is an artifact in the measured irradiance due to the increasing contribution of diffuse radiation against the decreasing direct irradiance caused by the eclipse. Calculations of the Extraterrestrial spectrum and the effective sun's temperatures, as measured from ground based direct irradiance measurements, showed an artificial change in the calculations of both quantities due to the fact that radiation coming from the visible part of the sun during the eclipse phases differs from the back body radiation described by the Planck's law

    Monitoring dust particle orientation with measurements of sunlight dichroic extinction

    Get PDF
    © 2021 COMECAP CONFERENCE. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the author.Alignment of irregularly shaped dust aerosols leading to linear dichroism has been reported in atmospheric layers. The present study intents to quantify the excess linear polarization of direct solar radiation propagating through atmospheric layers, when these contain oriented dust particles. In order to record the linear polarization, we have used the Solar Polarimeter (SolPol). SolPol is an instrument that measures the polarization of direct solar irradiance at 550nm. It is installed on an astronomical tracker in order target the solar disk. Using the measurements, the Stokes parameters are retrieved (I, Q/I, U/I and V/I) with an accuracy of ~1% and precision of 1 ppm. Collocated measurements of a sun-photometer (Aerosol Robotic Network; AERONET) and lidar are used to quantify the Aerosol Optical Depth (AOD) and identify the vertical distribution of dust layers, respectively. We will present indications of dust particle orientation recorded at the PANGEA station in the island of Antikythera, Greece, and at Nicosia, Cyprus during the preparatory phase for the ASKOS campaign in July 2021. The relation of the linear polarization of the solar irradiance to other optical properties of the dust layer is investigated
    • …
    corecore