1,009 research outputs found

    Transnuclear TRP1-Specific CD8 T Cells with High or Low Affinity TCRs Show Equivalent Antitumor Activity

    Get PDF
    We have generated, via somatic cell nuclear transfer, two independent lines of transnuclear (TN) mice, using as nuclear donors CD8 T cells, sorted by tetramer staining, that recognize the endogenous melanoma antigen TRP1. These two lines of nominally identical specificity differ greatly in their affinity for antigen (TRP1(high) or TRP1(low)) as inferred from tetramer dissociation and peptide responsiveness. Ex vivo-activated CD8 T cells from either TRP1(high) or TRP1(low) mice show cytolytic activity in 3D tissue culture and in vivo, and slow the progression of subcutaneous B16 melanoma. Although naïve TRP1(low) CD8 T cells do not affect tumor growth, upon activation these cells function indistinguishably from TRP1(high) cells in vivo, limiting tumor cell growth and increasing mouse survival. The anti-tumor effect of both TRP1(high) and TRP1(low) CD8 T cells is enhanced in RAG-deficient hosts. However, tumor outgrowth eventually occurs, likely due to T cell exhaustion. The TRP1 TN mice are an excellent model for examining the functional attributes of T cells conferred by TCR affinity, and they may serve as a platform for screening immunomodulatory cancer therapies

    Do the constants of nature couple to strong gravitational fields?

    Get PDF
    Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant α\alpha, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni V line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in α\alpha. It was found that the Fe V lines indicated an increasing alpha, whereas the Ni V lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28^{\circ}4211 to calibrate the Fe/Ni V atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.Comment: 4 pages, 2 figures: To appear in the proceedings of the "19th European White Dwarf Workshop" in Montreal, Canada, 201

    Network Growth and Structural Characteristics of Globular Protein Hydrogels

    Get PDF
    Folded protein-based hydrogels are a novel class of biomaterials which combine the useful viscoelastic properties of individual proteins together with the prospect of rational design principles. Although the macroscopic properties of these materials have been well studied, there is a paucity of understanding of their mesoscopic formation mechanisms, especially given the differences in building blocks compared to biopolymer hydrogels. We present the results of a simulation study into the growth of polymeric networks of chemically cross-linked folded proteins that form the structural backbone of these hydrogels, observing how experimentally controllable parameters affect the resultant network growth and structural characteristics. We show that the initial volume fraction emerges as a dominant parameter at the network level but that the properties of the single protein remain important. We ultimately show that we can tune the properties of a monodisperse protein hydrogel network only within limits which are dictated primarily by implicit diffusion time scales

    Angular momentum and an invariant quasilocal energy in general relativity

    Full text link
    Owing to its transformation property under local boosts, the Brown-York quasilocal energy surface density is the analogue of E in the special relativity formula: E^2-p^2=m^2. In this paper I will motivate the general relativistic version of this formula, and thereby arrive at a geometrically natural definition of an `invariant quasilocal energy', or IQE. In analogy with the invariant mass m, the IQE is invariant under local boosts of the set of observers on a given two-surface S in spacetime. A reference energy subtraction procedure is required, but in contrast to the Brown-York procedure, S is isometrically embedded into a four-dimensional reference spacetime. This virtually eliminates the embeddability problem inherent in the use of a three-dimensional reference space, but introduces a new one: such embeddings are not unique, leading to an ambiguity in the reference IQE. However, in this codimension-two setting there are two curvatures associated with S: the curvatures of its tangent and normal bundles. Taking advantage of this fact, I will suggest a possible way to resolve the embedding ambiguity, which at the same time will be seen to incorporate angular momentum into the energy at the quasilocal level. I will analyze the IQE in the following cases: both the spatial and future null infinity limits of a large sphere in asymptotically flat spacetimes; a small sphere shrinking toward a point along either spatial or null directions; and finally, in asymptotically anti-de Sitter spacetimes. The last case reveals a striking similarity between the reference IQE and a certain counterterm energy recently proposed in the context of the conjectured AdS/CFT correspondence.Comment: 54 pages LaTeX, no figures, includes brief summary of results, submitted to Physical Review

    Chronology Protection and Non-Naked Singularity

    Full text link
    We test the chronology protection conjecture in classical general relativity by investigating finitely vicious space-times. First we present singularity theorems in finitely vicious space-times by imposing some restrictions on the chronology violating sets. In the theorems we can refer to the location of an occurring singularity and do not assume any asymptotic conditions such as the existence of null infinities. Further introducing the concept of a non-naked singularity, we show that a restricted class of chronology violations cannot arise if all occurring singularities are the non-naked singularities. Our results suggest that the causal feature of the occurring singularities is the key to prevent the appearance of causality violation.Comment: 17 pages including 3 eps figures. Accepted for publication in Classical and Quantum Gravit

    Cocapture of cognate and bystander antigens can activate autoreactive B cells

    Get PDF
    Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) are associated with autoimmune central nervous system diseases like acute disseminated encephalomyelitis (ADEM). For ADEM, it is speculated that a preceding infection is the trigger of the autoimmune response, but the mechanism connecting the infection to the production of MOG antibodies remains a mystery. We reasoned that the ability of B cells to capture cognate antigen from cell membranes, along with small quantities of coexpressed “bystander” antigens, might enable B-cell escape from tolerance. We tested this hypothesis using influenza hemagglutinin as a model viral antigen and transgenic, MOG-specific B cells. Using flow cytometry and live and fixed cell microscopy, we show that MOG-specific B cells take up large amounts of MOG from cell membranes. Uptake of the antigen from the membrane leads to a strong activation of the capturing B cell. When influenza hemagglutinin is also present in the membrane of the target cell, it can be cocaptured with MOG by MOG-specific B cells via the B-cell receptor. Hemagglutinin and MOG are both presented to T cells, which in turn are activated and proliferate. As a consequence, MOG-specific B cells get help from hemagglutinin-specific T cells to produce anti-MOG antibodies. In vivo, the transfer of MOG-specific B cells into recipient mice after the cocapture of MOG and hemagglutinin leads to the production of class-switched anti-MOG antibodies, dependent on the presence of hemagglutinin-specific T cells. This mechanism offers a link between infection and autoimmunity. Keywords: tolerance; autoantibodies; antigen capture; antigen presentation; influenz

    Gravitational Energy in Spherical Symmetry

    Get PDF
    Various properties of the Misner-Sharp spherically symmetric gravitational energy E are established or reviewed. In the Newtonian limit of a perfect fluid, E yields the Newtonian mass to leading order and the Newtonian kinetic and potential energy to the next order. For test particles, the corresponding Hajicek energy is conserved and has the behaviour appropriate to energy in the Newtonian and special-relativistic limits. In the small-sphere limit, the leading term in E is the product of volume and the energy density of the matter. In vacuo, E reduces to the Schwarzschild energy. At null and spatial infinity, E reduces to the Bondi-Sachs and Arnowitt-Deser-Misner energies respectively. The conserved Kodama current has charge E. A sphere is trapped if E>r/2, marginal if E=r/2 and untrapped if E<r/2, where r is the areal radius. A central singularity is spatial and trapped if E>0, and temporal and untrapped if E<0. On an untrapped sphere, E is non-decreasing in any outgoing spatial or null direction, assuming the dominant energy condition. It follows that E>=0 on an untrapped spatial hypersurface with regular centre, and E>=r_0/2 on an untrapped spatial hypersurface bounded at the inward end by a marginal sphere of radius r_0. All these inequalities extend to the asymptotic energies, recovering the Bondi-Sachs energy loss and the positivity of the asymptotic energies, as well as proving the conjectured Penrose inequality for black or white holes. Implications for the cosmic censorship hypothesis and for general definitions of gravitational energy are discussed.Comment: 23 pages. Belatedly replaced with substantially extended published versio

    RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006.

    Get PDF
    Background: Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant.Results: In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was controlled by a putative 5′ cis-acting regulatory RNA element. Conclusion: Using a combination of transcriptomics and proteomics this study provides a systems-level understanding of Hfq and RsmA regulation and identifies similarities and differences in the regulons of two major regulators. Additionally our study indicates that RsmA regulates both core and variable genome regions and contributes to genome stability

    Behavior of Quasilocal Mass Under Conformal Transformations

    Get PDF
    We show that in a generic scalar-tensor theory of gravity, the ``referenced'' quasilocal mass of a spatially bounded region in a classical solution is invariant under conformal transformations of the spacetime metric. We first extend the Brown-York quasilocal formalism to such theories to obtain the ``unreferenced'' quasilocal mass and prove it to be conformally invariant. The appropriate reference term in this case is defined by generalizing the Hawking-Horowitz prescription, which was originally proposed for general relativity. For such a choice of reference term, the referenced quasilocal mass for a general spacetime solution is obtained. This expression is shown to be a conformal invariant provided the conformal factor is a monotonic function of the scalar field. We apply this expression to the case of static spherically symmetric solutions with arbitrary asymptotics to obtain the referenced quasilocal mass of such solutions. Finally, we demonstrate the conformal invariance of our quasilocal mass formula by applying it to specific cases of four-dimensional charged black hole spacetimes, of both the asymptotically flat and non-flat kinds, in conformally related theories.Comment: LaTeX, 31 pages, one ps figur
    corecore