139 research outputs found

    Circuits with arbitrary gates for random operators

    Full text link
    We consider boolean circuits computing n-operators f:{0,1}^n --> {0,1}^n. As gates we allow arbitrary boolean functions; neither fanin nor fanout of gates is restricted. An operator is linear if it computes n linear forms, that is, computes a matrix-vector product y=Ax over GF(2). We prove the existence of n-operators requiring about n^2 wires in any circuit, and linear n-operators requiring about n^2/\log n wires in depth-2 circuits, if either all output gates or all gates on the middle layer are linear.Comment: 7 page

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(logk)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth logn/(loglogn)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(logk)n^{\Omega(\log k)} for all k(n)loglognk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(logk)\Omega(\log k) for all k(n)loglognk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(loglogk)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)logloglognd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    On uncertainty versus size in branching programs

    Get PDF
    AbstractWe propose an information-theoretic approach to proving lower bounds on the size of branching programs. The argument is based on Kraft type inequalities for the average amount of uncertainty about (or entropy of) a given input during the various stages of computation. The uncertainty is measured by the average depth of so-called ‘splitting trees’ for sets of inputs reaching particular nodes of the program.We first demonstrate the approach for read-once branching programs. Then, we introduce a strictly larger class of so-called ‘balanced’ branching programs and, using the suggested approach, prove that some explicit Boolean functions cannot be computed by balanced programs of polynomial size. These lower bounds are new since some explicit functions, which are known to be hard for most previously considered restricted classes of branching programs, can be easily computed by balanced branching programs of polynomial size

    A shortcut to (sun)flowers: Kernels in logarithmic space or linear time

    Full text link
    We investigate whether kernelization results can be obtained if we restrict kernelization algorithms to run in logarithmic space. This restriction for kernelization is motivated by the question of what results are attainable for preprocessing via simple and/or local reduction rules. We find kernelizations for d-Hitting Set(k), d-Set Packing(k), Edge Dominating Set(k) and a number of hitting and packing problems in graphs, each running in logspace. Additionally, we return to the question of linear-time kernelization. For d-Hitting Set(k) a linear-time kernelization was given by van Bevern [Algorithmica (2014)]. We give a simpler procedure and save a large constant factor in the size bound. Furthermore, we show that we can obtain a linear-time kernel for d-Set Packing(k) as well.Comment: 18 page

    The effect of null-chains on the complexity of contact schemes

    Full text link

    Counting dependent and independent strings

    Full text link
    The paper gives estimations for the sizes of the the following sets: (1) the set of strings that have a given dependency with a fixed string, (2) the set of strings that are pairwise \alpha independent, (3) the set of strings that are mutually \alpha independent. The relevant definitions are as follows: C(x) is the Kolmogorov complexity of the string x. A string y has \alpha -dependency with a string x if C(y) - C(y|x) \geq \alpha. A set of strings {x_1, \ldots, x_t} is pairwise \alpha-independent if for all i different from j, C(x_i) - C(x_i | x_j) \leq \alpha. A tuple of strings (x_1, \ldots, x_t) is mutually \alpha-independent if C(x_{\pi(1)} \ldots x_{\pi(t)}) \geq C(x_1) + \ldots + C(x_t) - \alpha, for every permutation \pi of [t]

    No small nondeterministic read-once branching programs for CNFs of bounded treewidth

    Get PDF
    In this paper, given a parameter k, we demonstrate an infinite class of cnfs of treewidth at most k of their primal graphs such that equivalent nondeterministic read-once branching programs (nrobps) are of size at least nck for some universal constant c. Thus we rule out the possibility of fixed-parameter tractable space complexity of nrobps parameterized by the smallest treewidth of equivalent cnfs

    On the read-once property of branching programs and CNFs of bounded treewidth

    Get PDF
    for non-deterministic (syntactic) read-once branching programs (nrobps) on functions expressible as cnfs with treewidth at most k of their primal graphs. This lower bound rules out the possibility of fixed-parameter space complexity of nrobps parameterized by k. We use lower bound for nrobps to obtain a quasi-polynomial separation between Free Binary Decision Diagrams and Decision Decomposable Negation Normal Forms, essentially matching the existing upper bound introduced by Beame et al. (Proceedings of the twenty-ninth conference on uncertainty in artificial intelligence, Bellevue, 2013) and thus proving the tightness of the latter

    On Matrices, Automata, and Double Counting

    Get PDF
    Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables M, with the same constraint defined by a finite-state automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances
    corecore