
No small nondeterministic read-once branching
programs for CNFs of bounded treewidth

Igor Razgon

Department of Computer Science and Information Systems, Birkbeck, University of London
igor@dcs.bbk.ac.uk

Abstract. In this paper, given a parameter k, we demonstrate an infinite class of
CNFs of treewidth at most k of their primal graphs such that equivalent nonde-
terministic read-once branching programs (NROBPs) are of size at least nck for
some universal constant c. Thus we rule out the possibility of fixed-parameter
tractable space complexity of NROBPs parameterized by the smallest treewidth of
equivalent CNFs.

1 Introduction

Read-once Branching Programs (ROBPs) is a well known representation of Boolean
functions. Oblivious ROBPs, better known as Ordered Binary Decision Diagrams (OBDDs),
is a subclass of ROBPs, very well known because of its applications in the area of verifi-
cation [2]. An important procedure in these applications is transformation of a CNF into
an equivalent OBDD. The resulting OBDD can be exponentially larger than the initial
CNF, however a space efficient transformation is possible for special classes of func-
tions. For example, it has been shown in [3] that a CNF of treewidth k of its primal
graph can be transformed into an OBDD of size O(nk). A natural question is if the
upper bound can be made fixed-parameter tractable i.e. of the form f(k)nc for some
constant c. In [8] we showed that it is impossible by demonstrating that for each suffi-
ciently large k there is an infinite class of CNFs of treewidth at most k whose smallest
OBDD is of size at least nk/5.

In this paper we report a follow up result showing that essentially the same lower
bound holds for Non-deterministic ROBPs (NROBPs). In particular we show that there
is a constant 0 < c < 1 such that for each sufficiently large k there is an infinite class
of CNFs of treewidth at most k (of their primal graphs) for which the space complexity
of equivalent NROBPs is at least nck. Note that NROBPs are strictly more powerful than
ROBPs in the sense that there is an infinite class of functions having a poly-size NROBP
representation and exponential ROBP space complexity [4]. In the same sense, ROBPs
are strictly more powerful than OBDDs, hence the result proposed in this paper is a
significant enhancement of the result of [8].

We believe this result is interesting from the parameterized complexity theory per-
spective because it contributes to the understanding of parameterized space complex-
ity of various representations of Boolean functions. In particular, the proposed result
implies that ROBPs are inherently incapable to efficiently represent functions that are
representable by CNFs of bounded treewidth. A natural question for further research is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/42135992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the space complexity of read c-times branching programs [1] (for an arbitrary constant
c independent on k) w.r.t. the same class of functions.

To prove the proposed result, we use monotone 2-CNFs (their clauses are of form
(x1 ∨ x2) where x1 and x2 are 2 distinct variables). These CNFs are in one-to-one
correspondence with graphs having no isolated vertices: variables correspond to vertices
and two variables occur in the same clause if and only if the corresponding vertices are
adjacent. This correspondence allows us to use these CNFs and graphs interchangeably.
We introduce the notion of Matching Width (MW) of a graphG and prove two theorems.
One of them states that a monotone 2-CNF, whose corresponding graph G has MW at
least t, cannot be computed by a NROBP of size smaller than 2t/a, where a is a constant
dependent on the max-degree of G. The second theorem states that for each sufficiently
large k there is an infinite family of graphs of treewidth k and max-degree 5 whose
MW is at least b ∗ logn ∗ k for some constant b independent of k. The main theorem
immediately follows from replacement of t in the former lower bound by the latter one.

The strategy outlined above is similar to that we used in [8]. However, there are two
essential differences. First, due to a much more ‘elusive’ nature of NORBPs compared
to that of OBDDs, the counting argument is more sophisticated and more restrictive: it
applies only to CNFs whose graphs are of constant degree. Due to this latter aspect, the
target set of CNF instances requires a more delicate construction and reasoning.

Due to the space constraints, some proofs are either omitted or replaced by sketches.

2 Preliminaries

In this paper by a set of literals we mean one that does not contain both an occurrence
of a variable and its negation. For a set S of literals we denote by V ar(S) the set of
variables whose literals occur in S. If F is a Boolean function or its representation by a
specified structure, we denote by V ar(F) the set of variables of F . A truth assignment
to V ar(F) on which F is true is called a satisfying assignment of F . A set S of literals
represents the truth assignment to V ar(S) where variables occurring positively in S
(i.e. whose literals in S are positive) are assigned with true and the variables occurring
negatively are assigned with false. For example, the assignment {x1 ← true, x2 ←
true, x3 ← false} to variables x1, x2, x3 is represented as {x1, x2,¬x3}.

We define a Non-deterministic Read Once Branching Program (NROBP) as a con-
nected acyclic read-once switching-and-rectifier network [4]. That is, a NROBP Y im-
plementing (realizing) a function F is a directed acyclic graph (with possible multiple
edges) with one leaf, one root, and with some edges labelled by literals of the variables
of F in a way that there is no directed path having two edges labelled with literals of
the same variable. We denote by A(P) the set of literals labelling edges of a directed
path P of Y .

The connection between Y andF is defined as follows. LetP be a path from the root
to the leaf of Y . Then any extension of A(P) to the truth assignment of all the variables
of F is a satisfying assignment of F . Conversely, let A be a satisfying assignment of F .
Then there is a path P from the root to the leaf of Y such that A(P) ⊆ A.

Remark. It is not hard to see that the traditional definition of NROBP as a determin-
istic ROBP with guessing nodes [5] can be thought of as a special case of our definition

(for any function that is not constant false): remove from the former all the nodes from
which the true leaf is not reachable and relabel each edge with the appropriate literal
of the variable labelling its tail (if the original label on the edge is 1 then the literal is
positive, otherwise, if the original label is 0, the literal is negative).

We say that a NROBP Y is uniform if the following is true. Let a be a node of Y and
let P1 and P2 be 2 paths from the root of Y to a. Then V ar(A(P1)) = V ar((A(P2)).
That is, these paths are labelled by literals of the same set of variables. Also, if P is a
path from the root to the leaf of Y then V ar(A(P)) = V ar(F). Thus there is a one-to-
one correspondence between the sets of literals labelling paths from the root to the leaf
of Y and the satisfying assignments of F .

All the NROBPs considered in Sections 3-5 of this paper are uniform. This as-
sumption does not affect our main result because, using the construction described in
the proof sketch of Proposition 2.1 of [6], an arbitrary NROBP can be transformed into
a uniform one at the price of O(n) times increase of the number of edges. For the
technical details, see the appendix of [7].

Given a graphG, its tree decomposition is a pair (T,B) where T is a tree and B is a
set of bagsB(t) corresponding to the vertices t of T . EachB(t) is a subset of V (G) and
the bags obey the rules of union (that is,

⋃
t∈V (T)B(t) = V (G)), containment (that is,

for each {u, v} ∈ E(G) there is t ∈ V (t) such that {u, v} ⊆ B(t)), and connectedness
(that is for each u ∈ V (G), the set of all t such that u ∈ B(t) induces a subtree of T).
The width of (T,B) is the size of the largest bag minus one. The treewidth of G is the
smallest width of a tree decomposition of G.

Given a CNF φ, its primal graph has the set of vertices corresponding to the vari-
ables of φ. Two vertices are adjacent if and only if there is a clause of φ where the
corresponding variables both occur.

3 The main result

A monotone 2-CNFs has clauses of the form (x ∨ y) where x and y are two dis-
tinct variables. Such CNFs can be put in one-to-one correspondence with graphs that
do not have isolated vertices. In particular, let G be such a graph. Then G corre-
sponds to a 2CNF φ(G) whose variables are the vertices of G and the set of clauses
is {(u ∨ v)|{u, v} ∈ E(G)}. These notions, connected to the corresponding NROBP,
are illustrated on Figure 1. 1 It is not hard to see that G is the primal graph of φ(G),
hence we can refer to the treewidth of G as the primal graph treewidth of φ(G).

The following theorem is the main result of this paper.

Theorem 1. There is a constant c such that for each k ≥ 50 there is an infinite class G
of graphs each of treewidth of at most k such that for each G ∈ G, the smallest NROBP
equivalent to φ(G) is of size at least nk/c, where n is the number of variables of φ(G).

In order to prove Theorem 1, we introduce the notion of matching width (MW) of a
graph and state two theorems proved in the subsequent two sections. One claims that if

1 Notice that on the NROBP in Figure 1, there is a path where v2 occurs before v3 and a path
where v3 occurs before v2. Thus this NROBP, although uniform, is not oblivious.

V1 ~V1

V4 ~V4

V2 ~V2

V3

V1

V4

V2 V3

~V3

(V1 v V2)(V1 v V3)(V2 v V4)(V3 v V4)

V4

~V4

V3

V2

Fig. 1. A graph, the corresponding CNF and a NROBP of the CNF

the max-degree of G is bounded then the size of a NROBP realizing φ(G) is exponential
in the MW of G. The other theorem claims that for each sufficiently large k there is an
infinite class of graphs of bounded degree and of treewidth at most k whose MW is at
least b ∗ logn ∗ k for some universal constant b. Theorem 1 will follow as an immediate
corollary of these two theorems.

Definition 1. Matching width.
Let SV be a permutation of V (G) and let S1 be a prefix of SV (i.e. all vertices of
SV \ S1 are ordered after S1). The matching width of S1 is the size of the largest
matching consisting of the edges between S1 and V (G) \ S1. 2 The matching width of
SV is the largest matching width of a prefix of SV . The matching width of G, denoted
by mw(G), is the smallest matching width of a permutation of V (G).

Remark. The above definition of matching width is a special case of the notion of
maximum matching width as defined in [9].

To illustrate the above notions recall that Cn and Kn respectively denote a cycle
and a complete graph of n vertices. Then, for a sufficiently large n, mw(Cn) = 2. On
the other hand mw(Kn) = bn/2c.

Theorem 2. For each integer i there is a constant ai such that for any graph G the size
of NROBP realizing φ(G) is at least 2mw(G)/ax where x is the max-degree of G.

Theorem 3. There is a constant b such that for each k ≥ 50 there is an infinite class
G of graphs of degree at most 5 such that the treewidth of all the graphs of G is at most
k and for each G ∈ G the matching width is at least (logn ∗ k)/b where n = |V (G)|.

Now we are ready to prove Theorem 1.
Proof of Theorem 1. Let G be the class whose existence is claimed by Theorem

3. By Theorem 2, for each G ∈ G the size of a NROBP realizing φ(G) is of size at
least 2mw(G)/a5 . Further on, by Theorem 3, wm(G) ≥ (logn ∗ k)/b, for some constant

2 We sometimes treat sequences as sets, the correct use will be always clear from the context

b. Substituting the inequality for mw(G) into the lower bound 2mw(G)/a5 supplied by
Theorem 2, we get that the size of a NROBP is at least 2logn∗k/c where c = a5 ∗ b.
Replacing 2logn by n gives us the desired lower bound. �

From now on, the proof is split into two independent parts: Section 4 proves Theo-
rem 2 and Section 5 proves Theorem 3.

4 Proof of Theorem 2

Recall that the vertices of graph G serve as variables in φ(G). That is, in the truth
assignments to V ar(φ(G)), the vertices are treated as literals and may occur positively
or negatively. Similarly for a path P of a NROBP Z implementing φ(G), we say that a
vertex v ∈ V (G) occurs on P if either v and ¬v labels an edge of P . In the former case
this is a positive occurrence, in the latter case a negative one.

Recall that a Vertex Cover (VC) of G is V ′ ⊆ V (G) incident to all the edges of
E(G).

Observation 1 S is a satisfying assignment of φ(G) if and only if the vertices of G
occurring positively in S form a VC of G. Equivalently, V ′ ⊆ V (G) is the set of all
vertices of G occurring positively on a root-leaf path of Z if and only if V ′ is a VC of
G.

In light of Observation 1, we denote the set of all vertices occurring positively on a
root-leaf path P of Z by V C(P).

The proof of Theorem 2 requires two intermediate statements. For the first state-
ment, let a be a node of a NROBP Z. For an integer t > 0, we call a a t-node if there
is a set S(a) of size at least t such that for each root-leaf path P passing through a,
S(a) ⊆ V C(P).

Lemma 1. Suppose that the matching width of G is at least t. Then t-nodes of Z form
a root-leaf cut.

Proof. We need to show that each root-leaf path P passes through a t-node. Due to
the uniformity of Z, (the vertices of G corresponding to) the labels of P being explored
from the root to the leaf form a permutation SV of V (G). Let SV ′ be a prefix of the
permutation witnessing the matching width at least t. In other words, there is a matching
M = {{u1, v1}, . . . , {ut, vt}} of G such that all of u1, . . . , ut belong to SV ′, while all
of v1, . . . , vt belog to SV \SV ′. Let u be the last vertex of SV ′ and let a be the head of
the edge of P whose label is a literal of u. We claim that a is a t-node with a witnessing
set S(a) = {x1, . . . , xt} such that xi ∈ {ui, vi} for each xi.

Indeed, observe that for each {ui, vi} there is xi ∈ {ui, vi} such that xi ∈ V C(P)
for each root-leaf path P passing through a. Clearly for any root-leaf pathQ ofZ, either
ui ∈ V C(Q) or vi ∈ V C(Q) for otherwise V C(Q) is not a VC of G in contradiction
to Observation 1. Thus if such xi does not exist then there are two paths Q1 and Q2

meeting a such that V C(Q1) ∩ {ui, vi} = {ui} and V C(Q2) ∩ {ui, vi} = {vi}.
For a root-leaf path Q passing through a denote by Qa the prefix of Q ending with

a and by ¬Qa the suffix of Q beginning with a. Observe that ui occurs both in Q1
a

and Q2
a. Indeed, assume w.l.o.g. that ui does not occur in Q1

a. Then, by uniformity of
Z, ui occurs in ¬Q1

a. Then Pa + ¬Q1
a (we denote this way the concatenation of two

paths) is a root-leaf path with a double occurrence of ui, a contradiction to Z being
read-once. Similarly we establish that vi occurs in both ¬Q1

a and ¬Q2
a. It remains to

observe that, by definition, ui occurs negatively in Q2
a and vi occurs negatively in ¬Q1

a.
Hence Q∗ = Q2

a + ¬Q1
a is a root-leaf path of Z such that V C(Q∗) is disjoint with

{ui, vi}, a contradiction to Observation 1, confirming the existence of the desired xi.
Suppose that there is a root-leaf path P ′ of Z passing through a such that S(a) *

V C(P ′). This means that there is xi /∈ V C(P ′) contradicting the previous two para-
graphs. Thus being a a t-node has been established and the lemma follows. �

For the second statement, let A and B be two families of subsets of a universe U.
We say that A covers B if for each S ∈ B there is S′ ∈ A such that S′ ⊆ S. If
each element of A is of size at least t then we say that A is a t-cover of B. Denote by
VC(G) the set of all VCs of G.

Theorem 4. There is a function f such that the following is true. LetH be a graph. Let
A be a t-cover of VC(H). The |A| ≥ 2t/f(x) where x is the max-degree of H .

The proof of Theorem 4 is provided in Subsection 4.1. Now we are ready to prove
Theorem 2.

Proof of Theorem 2. Let N be the set of all t-nodes of Z. For each a ∈ N , specify
one S(a) of size at least t such that for all paths P of Z passing through a, S(a) ⊆
V C(P). Let S = {S1, . . . , Sq} be the set of all such S(a). Then we can specify distinct
a1, . . . , aq such that Si = S(ai) for all i ∈ {1, . . . , q}.

Observe that S is covers VC(G). Indeed, let V ′ ∈ VC(G). By Observation 1, there
is a root-leaf path P with V ′ = V C(P). By Lemma 1, P passes through some a ∈ N
and hence S(a) ⊆ V C(P). By definition, S(a) = Si for i ∈ {1, . . . , q} and hence
Si ⊆ V ′. Thus S is a t-cover of VC(G).

It follows from Theorem 4 that q = |S| ≥ 2t/f(x) where x is a max-degree of G
and f is a universal function independent on G or t. It follows that Z contains at least
2t/f(x) distinct nodes namely a1, . . . , aq . �

4.1 Proof of Theorem 4

We are going to define a probability distribution of VC(G) and to show that for a
graph G of constant degree the probability of an element of VC(G) to be a superset
of a specific subset of size at least t is exponentially small in t. We then conclude that
the number of such subsets covering all the elements of VC(G) must be exponentially
large in t. In the technical details that follow, we do not use the probabilites explicitly
but rather present the proof in terms of weighted counting.

Let us define a graph G with fixed vertices as (V,E, F) where V and E bear their
usual meaning and F ⊆ V is the set of fixed vertices. We can also use V (G), E(G),
F (G) to denote V , E, F , respectively. A set S ⊆ V (G) is a VC of G if S is a VC
of (V,E) and in addition, F ⊆ S. Then VC(G) is the set of all VCs of (V,E) that
contain F as a subset. We define G \ v as (V ′, E′, F ′) with (V ′, E′) = (V,E) \ v (the
usual operation of vertex removal from a graph) and F ′ = F \ {v}. We define G/v as

(V ′, E′, F ′′), where (V ′, E′) are as above and F ′′ = F ∪NG(v), where NG(v) is the
set of neighbours of v in (V,E).

Let SV be a permutation of V . Now we are going to define a decision tree of
VC(G) w.r.t. SV , denoting it by T = TG,SV . It is a rooted binary tree with edges
directed from the parent to a child. If a node a of T has two children, we distinguish
the left child lchT (a) and the right child rchT (a) (the subscript can be omitted if clear
from the context). If a is a unary node, its only child is considered the left one and
the right child is not defined. We denote by Ta the subtree of T rooted by a. With this
notation in mind we define T recursively as follows.

If G is an empty graph then TG,SV consists of a single node. Otherwise, let vf be
the first vertex of SV , SV ′ = SV \ vf (the suffix of SV ′ resulting from the removal of
vf), and rt be the root of TG,SV . If vf ∈ F (G) then rt is a unary node, otherwise rt
is a binary node. The edge (rt, lch(rt)) is labelled with vf and Tlch(rt) is TG\vf,SV ′ .
If rt is a binary node (the right child of rt is defined) then (rt, lch(rt)) is labelled with
¬vf and Trch(rt) = TG/vf,SV ′ .

An example of a decision tree as defined above is provided in Figure 2.

V1

V2 ~V2

V3 ~V3 V3 ~V3

V4 V4 V4 V4

~V4

V1

V2
V3

V4

Fixed vertex

Fig. 2. A tree TC,SV C where C is the graph on the left with F (C) = {v1} and SV C =
(v1, v2, v3, v4). All the edges of TS,SV C are directed to the bottom, hence the arrows on the
edges are not shown.

For a root-leaf path P of T , denote by V C(P) the set of vertices occurring posi-
tively as labels of the edges of P and let PT be the set of all root-leaf paths of T .

Observation 2 The set {V C(P)|P ∈ P}T is precisely VC(G).

Let S ⊆ V . Denote by PT,S the set if all root-leaf paths P of T such that S ⊆
V C(P). Let (a, b) be an edge of T and let P be a set of paths of P, all starting from
b. Then (a, b) + P = {(a, b) + P |P ∈ P} ((a, b) + P denotes the concatenation of a
single edge path (a, b) and P).

We say that S is a distant independent set (DIS) of G if the distance between any
two elements of S in G is at least 3 (the vertices of S are not adjacent and do not have
joint neighbours).

Lemma 2. Suppose that G is not empty and let vf be the first vertex of SV . Assume
that S is a DIS disjoint with F (G). Then the following statements are true regarding
PT,S .

1. If vf ∈ S then PT,S = (rt, lch(rt)) +PTlch(rt),S\{vf}.
2. If rt is a binary node and vf is a neighbour of S then [PT,S = (rt, lch(rt)) +

PTlch(rt),S] ∪ [(rt, rch(rt)) +PTrch(rt),S\{vn}] where vn is the only neighbour of
vf in S (due to S being a DIS).

3. In all other cases PT,S = (rt, lch(rt)) + PTlch(rt),S wherever rt is a unary node
and PT,S = [(rt, lch(rt)) + PTlch(rt),S] ∪ [(rt, rch(rt)) + PTrch(rt),S] wherever
rt has two children.

Proof. Assume that vf ∈ S and let P ∈ PT,S . By our assumption about vf , it can
occur only as a label on the first edge. Since vf ∈ S, this occurrence must be positive.
Consequently, the first edge is (rt, lch(rt)). Furthermore, the rest of the labels must
be supplied by the suffix of P starting at lch(rt). Hence we conclude that this suffix
belongs to PTlch(rt),S\{vf} and hence P ∈ (rt, lch(rt))+PTlch(rt),S\{vf}. Conversely,
let P ∈ (rt, lch(rt))+PTlch(rt),S\{vf}. Then vf occurs positively on the first edge and
the rest of vertices of S occur positively in the subsequent suffix. Thus S ⊆ V C(P)
and hence P ∈ PT,S .

It is straightforward to observe that if vf /∈ S then the third statement holds simply
owing to the fact the the occurrences of the vertices of S are not contributed by the first
edges of paths of PT . However, if vf is a neighbour of vn ∈ S, it can be noticed that
PTrch(rt),S = PTrch(rt)S\{vn} thus confirming the second statement. Indeed, since S ⊆
V C(P) implies S \ {vn} ∈ V C(P) for any P ∈ PT , PTrch(rt),S ⊆ PTrch(rt),S\{vn}.
For the opposite direction, recall that Trch(rt) = TG/vf,SV ′ and vn ∈ F (G/vf). This
means that vn ∈ V C(P) for any path P ∈ PTrch(rt)

. Consequently, S \ {vn} ⊆
V C(P) implies that S ⊆ V C(P) and hence PTrch(rt),S\{vn} ⊆ PTrch(rt),S . �

Let as assign weights to the edges of TG,SV as follows. For a binary node assign
weight 0.5 to both its outgoing edges. For a unary node assign weight 1 to its only out-
going edge. Denote the weight of an edge e by w(e). For a path P , the weight w(P) of
P is a product of weights of its edges, considering the weight of a single vertex path to
be 1, and for a set P of paths, its weight w(P) =

∑
P∈P w(P).

Observation 3 Let a be a node of TG,SV . Then the following statements hold.

– w(PTa
) = 1.

– Let (a, b) be an edge of TG,SV and let P be a set of paths of TG,SV all starting
from b. Then w((a, b) +P) = w((a, b)) ∗ w(P).

For v ∈ V (G), denote 1 − 2−(dG(v)+1) by pG(v). The following are simple facts
regarding pG(v).

Observation 4 The following statements hold regarding pG(v).

– Let u ∈ V (G) \ {v}. Then pG\u(v) ≤ pG(v).
– 0.5 ≤ pG(v).
– Let c be the max-degree of G. Then pG(v) ≤ 1− 2−(c+1).

The following is the central statement towards the proof of Theorem 4.

Lemma 3. Let S be a DIS of G such that S ∩ F (G) = ∅, let SV be an arbitrary
permutation of V (G) and let T = TG,SV . Then w(PT,S) ≤

∏
v∈S pG(v). (We assume

the right-hand part of the inequality to equal 1 if S = ∅).

Proof. By induction on |V (G)|. If |S| = 0 then the theorem clearly holds be-
cause w(PT,S) ≤ w(PT) = 1 by Observation 3. So, assume that |S| > 0 and hence
|V (G)| > 0. Let rt be the root of T and let vf be the first vertex of SV .

Suppose rt is a unary node (this means that vf ∈ F (G) and hence vf /∈ S).
It follows from Lemma 2 and Observation 4 that w(PT,S) = w(PTlch(rt),S). Recall
that Tlch(rt) = TG\vf,SV \vf and that S is disjoint with F (G \ vf). Hence, the in-
duction assumption stands. Combining it with the first item of Observation 4, we get
w(PTlch(rt),S) ≤

∏
v∈S pG\vf (v) ≤

∏
v∈S pG(v) as required.

In the rest of the proof we assume that rt is a binary node. Assume first that vf /∈
S ∪ N(S). Then S remains non-fixed in both G \ vf and G/vf and hence the induc-
tion assumption stands for both w(PTlch(rt),S) and w(PTrch(rt),S). Applying the same
line of argumentation as in the previous paragraph, we observe that w(PTlch(rt),S) ≤∏

v∈S pG(v) and w(PTrch(rt),S) ≤
∏

v∈S pG(v). By Lemma 2 together with Obser-
vation 3, we obtain w(PT,S) ≤ 0.5 ∗ w(PTlch(rt),S) + 0.5 ∗ w(PTrch(rt),S). Sub-
stituting w(PTlch(rt),S) and w(PTrch(rt),S) with

∏
v∈S pG(v), we obtain w(PT,S) ≤

0.5 ∗
∏

v∈S pG(v) + 0.5 ∗
∏

v∈S pG(v) =
∏

v∈S pG(v) as required.
Assume now that vf ∈ S. Observe that S \ {vf} is not fixed in G \ vf . Hence,

arguing as is the previous two paragraphs, we conclude that w(PTlch(rt),S\{vf}) ≤∏
v∈S\{vf} pG(v). Lemma 2 together with Observation 3 yield w(PT,S) ≤ 0.5 ∗

w(PTlch(rt),S). Substituting w(PTlch(rt),S\{vf}), we obtain
w(PT,S) ≤ 0.5∗

∏
v∈S\{vf} pG(v). By the second item of Observation 4, 0.5 can be re-

placed by pG(vf) in the last inequality. That isw(PT,S) ≤ pG(vf)∗
∏

v∈S\{vf} pG(v) =∏
v∈S pG(v) as required.

Finally, suppose that vf is a neighbour of S. That is vf is a neighbour of exactly
one vertex vn ∈ S. Observe that S is not fixed in G \ vf and S \ {vn} is not fixed
in G/vf . Hence, arguing as above, we conclude that w(PTlch(rt),S) ≤ pG\vf (vn) ∗∏

v∈S\{vn} pG(v) and that w(PTrch(rt),S\{vn}) ≤
∏

v∈S\{vn} pG(v) (notice that we
have not replaced pG\vf (vn) by pG(vn) as retaining the former is essential for the
forthcoming reasoning). By Lemma 2 and Observation 3,w(PT,S) ≤ 0.5∗w(PTlch(rt),S)+
0.5w(PTrch(rt),S\{vn}). Substituting w(PTlch(rt),S) and w(PTrch(rt),S\{vn}) and mov-
ing

∏
v∈S\{vn} pG(v) outside the brackets, we obtainw(PT,S) ≤ 0.5(pG\vf (vn)+1)∗∏

v∈S\{vn} pG(v). The last step of our reasoning is the observation that 0.5(pG\vf (vn)+
1) = pG(vn). Indeed, pG(vn) = (1 − 2−(dG(vn)+1)) = 0.5(2 − 2−dG(v)) = 0.5(1 −
2−(dG\vf (vn)+1)+1) = 0.5(pG\vf (vn)+1). Thusw(PT,S) ≤ pG(vn)∗

∏
v∈S\{vn} pG(v) =∏

v∈S pG(v) as required. �
Proof of Theorem 4. To consider H in the theorem statement as a graph with fixed

vertices, we represent it as (V,E, ∅). Let SV be an arbitrary permutation of V (H) and
let T = TH,SV .

For the given integer x > 0, let ax be the constant such that 2−1/ax = (1−2−(x+1)).
Let c be the max-degree of H . Then, by the last statement of Observation 4, for any
v ∈ V (H), pH(v) ≤ 2−1/ac .

Let S be a DIS of H . Then, combining the previous paragraph with Lemma 3, we
observe that w(PT,S) ≤ 2−|S|/ac .

Let S∗ be an arbitrary subset of V (H). Observe that there is a DIS S ⊆ S∗ of size
at least |S∗|/(c2 + 1). Indeed, let S ⊆ S∗ be a largest DIS which a subset of S. Then
each element of S∗ \ S is at distance at most 2 from an element of S. For each u ∈ S,
there are at most c + c(c − 1) = c2 elements of H lying at distance at most 2 from S.
Thus |S∗ \ S| ≤ |S| ∗ c2, that is |S∗| ≤ |S| ∗ (c2 + 1) and hence |S| ≥ |S∗|/(c2 + 1).
Since PT,S∗ ⊆ PT,S , w(PT,S∗) ≤ w(PT,S) ≤ 2−|S|/bc , where bc = ac ∗ (c2 + 1).

Let S1, . . . , Sq be a t-cover of VC(H). This means that for each P ∈ PT there is
Si whose vertices occur as positive labels on P . In other words, PT =

⋃q
i=1 w(PT,Si

)
Hence 1 = w(PT) ≤

∑q
i=1 w(PT,Si) ≤ q ∗ 2−t/bc , where the first equality follows

from Observation 3. Consequently, q ≥ 2t/bc as claimed. �

5 Proof of Theorem 3

Denote by Tr a complete binary tree of height (root-leaf distance) r. Let T be a tree
and H be an arbitrary graph. Then T (H) is a graph having disjoint copies of H in one-
to-one correspondence with the vertices of T . For each pair t1, t2 of adjacent vertices
of T , the corresponding copies are connected by making adjacent the pairs of same
vertices of these copies. Put differently, we can consider H as a labelled graph where
all vertices are associated with distinct labels. Then for each edge {t1, t2} of T , edges
are introduced between the vertices of the corresponding copies having the same label.
An example of this construction is shown on Figure 3.

Fig. 3. Graphs from the left to the right: T3, P3, T3(P3). The dotted ovals surround the copies of
P3 in T3(P3).

The following lemma is the critical component of the proof of Theorem 3.

Lemma 4. Let p be an arbitrary integer and let H be an arbitrary connected graph of
2p vertices. Then for any r ≥ dlogpe, mw(Tr(H)) ≥ (r + 1− dlogpe)p/2.

Before proving Lemma 4, let us show how Theorem 3 follows from it.
Sketch proof of Theorem 3. First of all, let us identify the class G. Recall that

Px a path of x vertices. Let 0 ≤ y ≤ 3 be such that k − y + 1 is a multiple of 4. The

considered class G consists of allG = Tr(P k−y+1
2

) for r ≥ 5dlogke. It can be observed
that the max-degree of the graphs of G is 5 and their treewidth is at most k.

Taking into account that starting from a sufficiently large r compared to k, r =
Ω(log(n/k)) can be seen as r = Ω(logn), the lower bound of Lemma 4 can be stated
as mw(G) = Ω(logn ∗ k). �

The following lemma is an auxiliary statement for Lemma 4.

Lemma 5. Let T be a tree consisting of at least p vertices. LetH be a connected graph
of at least 2p vertices. Let V1, V2 be a partition of V (T (H)) such that both partition
classes contain at least p2 vertices. Then T (H) has a matching of size p with the ends
of each edge belong to distinct partition classes.

Proof of Lemma 4. The proof is by induction on r. The first considered value of
r is dlogpe. After that r will increment in 2. In particular, for all values of r of the
form dlogpe+ 2x, we will prove that mw(Tr(H)) ≥ (x+ 1)p and, moreover, for each
permutation SV of V (Tr(H)), the required matching can be witnessed by a partition
of SV into a suffix and a prefix of size at least p2 each. Let us verify that the lower
bound mw(Tr(H)) ≥ (x+ 1)p implies the lemma. Suppose that r = dlogpe+ 2x for
some non-negative integer x. Then mw(G) ≥ (x + 1)p = ((r − dlogpe)/2 + 1)p >
(r − dlogpe+ 1)p/2. Suppose r = dlogpe+ 2x+ 1. Then mw(G) = mw(Tr(H)) ≥
mw(Tr−1(H)) ≥ (x+ 1)p = ((r − dlogpe − 1)/2 + 1)p = (r − dlogpe+ 1)p/2.

Assume that r = dlogpe and let us show the lower bound of p on the matching
width. Tr contains at least 2dlogpe+1 − 1 ≥ 2logp+1 − 1 = 2p − 1 ≥ p vertices. By
construction,H contains at least 2p vertices. Consequently, for each ordering of vertices
of Tr we can specify a prefix and a suffix of size at least p2 (just choose a prefix of size
p2). Let V1 be the set of vertices that got to the prefix and let V2 be the set of vertices
that got to the suffix. By Lemma 5 there is a matching of size at least p consisting of
edges between V1 and V2 confirming the lemma for the considered case.

Let us now prove the lemma for r = dlogpe + 2x for x ≥ 1. Specify the cen-
tre of Tr as the root and let T 1, . . . , T 4 be the subtrees of Tr rooted by the grand-
children of the root. Clearly, all of T 1, . . . , T 4 are copies of Tr−2. Let SV be a se-
quence of vertices of V (Tr(H)). Let SV 1, . . . , SV 4 be the respective sequences of
V (T 1(H)), . . . , V (T 4(H)) ‘induced’ by SV (that is their order is as in SV). By the
induction assumption, for each of them we can specify a partition SV i

1 , SV
i
2 into a pre-

fix and a suffix of size at least p2 each witnessing the conditions of the lemma for r−2.
Let u1, . . . , u4 be the last respective vertices of SV 1

1 , . . . , SV
4
1 . Assume w.l.o.g. that

these vertices occur in SV in the order they are listed. Let SV ′, SV ′′ be a partition of
SV into a prefix and a suffix such that the last vertex of SV ′ is u2. By the induction
assumption we know that the edges between SV 2

1 ⊆ SV ′ and SV 2
2 ⊆ SV ′′ form a

matching M of size at least xp. In the rest of the proof, we are going to show that the
edges between SV ′ and SV ′′ whose ends do not belong to any of SV 2

1 , SV
2
2 can be

used to form a matching M ′ of size p. The edges of M and M ′ do not have joint ends,
hence this will imply existence of a matching of size xp+ p = (x+ 1)p, as required.

The sets SV ′ \ SV 2
1 and SV ′′ \ SV 2

2 partition V (Tr(H)) \ (SV 2
1 ∪ SV 2

2) =
V (Tr(H)) \ V (T 2(H)) = V ([Tr \ T 2](H)). Clearly, Tr \ T2 is a tree. Furthermore, it
contains at least p vertices. Indeed, T 2 (isomorphic to Tr−2) has p vertices just because

we are at the induction step and Tr contains at least 4 times more vertices than T 2. So,
in fact, Tr \ T 2 contains at least 3p vertices. Furthermore, since u1 precedes u2, the
whole SV 1

1 is in SV ′. By definition, SV 1
1 is disjoint with SV 2

1 and hence it is a subset
of SV ′ \SV 2

1 . Furthermore, by definition, |SV 1
1 | ≥ p2 and hence |SV ′ \SV 2

1 | ≥ p2 as
well. Symmetrically, since u3 ∈ SV ′′, we conclude that SV 3

2 ⊆ SV ′′ \ SV 2
2 and due

to this |SV ′′ \ SV 2
2 | ≥ p2.

Thus SV ′ \ SV 2
1 and SV ′′ \ SV 2

2 partition V ([Tr \ T 2](H)) into classes of size at
least p2 each and the size of Tr \T 2 is at least 3p. Thus, according to Lemma 5, there is
a matching M ′ of size at least p created by edges between SV ′ \SV 2

1 and SV ′′ \SV 2
2 ,

confirming the lemma, as specified above. �

Acknowledgements

I would like to thank anonymous reviewers for very useful and insightful comments.
The research has been partly supported by the EPSRC grant EP/L020408/1.

References

1. Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for read-k-
times branching programs. Computational Complexity, 3:1–18, 1993.

2. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293–318, 1992.

3. Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi. Treewidth in verification: Local vs.
global. In LPAR, pages 489–503, 2005.

4. Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, 2012.
5. Alexander A. Razborov. Lower bounds for deterministic and nondeterministic branching pro-

grams. In FCT, pages 47–60, 1991.
6. Alexander A. Razborov, Avi Wigderson, and Andrew Chi-Chih Yao. Read-once branching

programs, rectangular proofs of the pigeonhole principle and the transversal calculus. In
STOC, pages 739–748, 1997.

7. Igor Razgon. No small nondeterministic read-once branching programs for CNFs of bounded
treewidth. CoRR, abs/1407.0491, 2014.

8. Igor Razgon. On OBDDs for CNFs of bounded treewidth. In KR, pages 92–100, 2014.
9. Martin Vatshelle. New width parameters of graphs. PhD thesis, Department of Informatics,

University of Bergen, 2012.

