90 research outputs found
Prior elicitation of the efficacy and tolerability of Methotrexate and Mycophenolate Mofetil in Juvenile Localised Scleroderma [version 1; peer review: 2 approved]
Background:
Evidence is lacking for safe and effective treatments for juvenile localised scleroderma (JLS). Methotrexate (MTX) is commonly used first line and mycophenolate mofetil (MMF) second line, despite a limited evidence base. A head to head trial of these two medications would provide data on relative efficacy and tolerability. However, a frequentist approach is difficult to deliver in JLS, because of the numbers needed to sufficiently power a trial. A Bayesian approach could be considered.
//
Methods:
An international consensus meeting was convened including an elicitation exercise where opinion was sought on the relative efficacy and tolerability of MTX compared to MMF to produce prior distributions for a future Bayesian trial. Secondary aims were to achieve consensus agreement on critical aspects of a future trial.
//
Results:
An international group of 12 clinical experts participated. Opinion suggested superior efficacy and tolerability of MMF compared to MTX; where most likely value of efficacy of MMF was 0.70 (95% confidence interval (CI) 0.34-0.90) and of MTX was 0.68 (95% CI 0.41-0.8). The most likely value of tolerability of MMF was 0.77 (95% CI 0.3-0.94) and of MTX was 0.62 (95% CI 0.32-0.84). The wider CI for MMF highlights that experts were less sure about relative efficacy and tolerability of MMF compared to MTX. Despite using a Bayesian approach, power calculations still produced a total sample size of 240 participants, reflecting the uncertainty amongst experts about the performance of MMF.
//
Conclusions:
Key factors have been defined regarding the design of a future Bayesian approach clinical trial including elicitation of prior opinion of the efficacy and tolerability of MTX and MMF in JLS. Combining further efficacy data on MTX and MMF with prior opinion could potentially reduce the pre-trial uncertainty so that, when combined with smaller trial sample sizes a compelling evidence base is available
Identification of a Novel Gene Product That Promotes Survival of Mycobacterium smegmatis in Macrophages
BACKGROUND: Bacteria of the suborder Corynebacterineae include significant human pathogens such as Mycobacterium tuberculosis and M. leprae. Drug resistance in mycobacteria is increasingly common making identification of new antimicrobials a priority. Mycobacteria replicate intracellularly, most commonly within the phagosomes of macrophages, and bacterial proteins essential for intracellular survival and persistence are particularly attractive targets for intervention with new generations of anti-mycobacterial drugs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified a novel gene that, when inactivated, leads to accelerated death of M. smegmatis within a macrophage cell line in the first eight hours following infection. Complementation of the mutant with an intact copy of the gene restored survival to near wild type levels. Gene disruption did not affect growth compared to wild type M. smegmatis in axenic culture or in the presence of low pH or reactive oxygen intermediates, suggesting the growth defect is not related to increased susceptibility to these stresses. The disrupted gene, MSMEG_5817, is conserved in all mycobacteria for which genome sequence information is available, and designated Rv0807 in M. tuberculosis. Although homology searches suggest that MSMEG_5817 is similar to the serine:pyruvate aminotransferase of Brevibacterium linens suggesting a possible role in glyoxylate metabolism, enzymatic assays comparing activity in wild type and mutant strains demonstrated no differences in the capacity to metabolize glyoxylate. CONCLUSIONS/SIGNIFICANCE: MSMEG_5817 is a previously uncharacterized gene that facilitates intracellular survival of mycobacteria. Interference with the function of MSMEG_5817 may provide a novel therapeutic approach for control of mycobacterial pathogens by assisting the host immune system in clearance of persistent intracellular bacteria
Immunopathogenesis of Pediatric Localized Scleroderma
Localized scleroderma (LS) is a complex disease characterized by a mixture of inflammation and fibrosis of the skin that, especially in the pediatric population, also affects extracutaneous tissues ranging from muscle to the central nervous system. Although developmental origins have been hypothesized, evidence points to LS as a systemic autoimmune disorder, as there is a strong correlation to family history of autoimmune disease, the presence of shared HLA types with rheumatoid arthritis, high frequency of auto-antibodies, and elevated circulating chemokines and cytokines associated with T-helper cell, IFNΞ³, and other inflammatory pathways. This inflammatory phenotype of the peripheral blood is reflected in the skin via microarray, RNA Sequencing and tissue staining. Research is underway to identify the key players in the pathogenesis of LS, but close approximation of inflammatory lymphocytic and macrophage infiltrate with collagen and fibroblasts deposition supports the notion that LS is a disease of inflammatory driven fibrosis. The immune system is dynamic and undergoes changes during childhood, and we speculate on how the unique features of the immune system in childhood could potentially contribute to some of the differences in LS between children and adults. Interestingly, the immune phenotype in pediatric LS resembles to some extent the healthy adult cellular phenotype, possibly supporting accelerated maturation of the immune system in LS. We discuss future directions in better understanding the pathophysiology of and how to better treat pediatric LS
Interaction and Modulation of Two Antagonistic Cell Wall Enzymes of Mycobacteria
Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB), a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA), an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1), as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through proteinβprotein interactions between enzymes with antagonistic functions
Prior elicitation of the efficacy and tolerability of Methotrexate and Mycophenolate Mofetil in Juvenile Localised Scleroderma
BackgroundEvidence is lacking for safe and effective treatments for juvenile localised scleroderma (JLS). Methotrexate (MTX) is commonly used first line and mycophenolate mofetil (MMF) second line, despite a limited evidence base. A head to head trial of these two medications would provide data on relative efficacy and tolerability. However, a frequentist approach is difficult to deliver in JLS, because of the numbers needed to sufficiently power a trial. A Bayesian approach could be considered.MethodsAn international consensus meeting was convened including an elicitation exercise where opinion was sought on the relative efficacy and tolerability of MTX compared to MMF to produce prior distributions for a future Bayesian trial. Secondary aims were to achieve consensus agreement on critical aspects of a future trial.ResultsAn international group of 12 clinical experts participated. Opinion suggested superior efficacy and tolerability of MMF compared to MTX; where most likely value of efficacy of MMF was 0.70 (95% confidence interval (CI) 0.34-0.90) and of MTX was 0.68 (95% CI 0.41-0.8). The most likely value of tolerability of MMF was 0.77 (95% CI 0.3-0.94) and of MTX was 0.62 (95% CI 0.32-0.84). The wider CI for MMF highlights that experts were less sure about relative efficacy and tolerability of MMF compared to MTX. Despite using a Bayesian approach, power calculations still produced a total sample size of 240 participants, reflecting the uncertainty amongst experts about the performance of MMF.ConclusionsKey factors have been defined regarding the design of a future Bayesian approach clinical trial including elicitation of prior opinion of the efficacy and tolerability of MTX and MMF in JLS. Combining further efficacy data on MTX and MMF with prior opinion could potentially reduce the pre-trial uncertainty so that, when combined with smaller trial sample sizes a compelling evidence base is available
ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data
Extracorporeal Membrane Oxygenation for Acute Pediatric Respiratory Failure
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The use of extracorporeal membrane oxygenation (ECMO) to support children with acute respiratory failure has steadily increased over the past several decades, with major advancements having been made in the care of these children. There are, however, many controversies regarding indications for initiating ECMO in this setting and the appropriate management strategies thereafter. Broad indications for ECMO include hypoxia, hypercarbia, and severe air leak syndrome, with hypoxia being the most common. There are many disease-specific considerations when evaluating children for ECMO, but there are currently very few, if any, absolute contraindications. Venovenous rather than veno-arterial ECMO cannulation is the preferred configuration for ECMO support of acute respiratory failure due to its superior side-effect profile. The approach to lung management on ECMO is variable and should be individualized to the patient, with the main goal of reducing the risk of VILI. ECMO is a relatively rare intervention, and there are likely a minimum number of cases per year at a given center to maintain competency. Patients who have prolonged ECMO runs (i.e., greater than 21 days) are less likely to survive, though no absolute duration of ECMO that would mandate withdrawal of ECMO support can be currently recommended
- β¦