683 research outputs found

    Measurement and analysis of critical crack tip processes during fatigue crack growth

    Get PDF
    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied

    A comparison of single-cycle versus multiple-cycle proof testing strategies

    Get PDF
    An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading

    Measurement and analysis of critical crack tip processes associated with variable amplitude fatigue crack growth

    Get PDF
    Crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading when linear damage accumulation procedures are employed. Crack closure is believed to control the crack growth retardation, although the specific closure mechanism is debatable. Information on the relative contributions to crack closure from: (1) plasticity left in the wake of the advancing crack and (2) crack tip residual stresses is provided. The delay period and corresponding crack growth rate transients following overloads are systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth as measured by crack tip opening loads and delta K sub eff. The latter measurements are obtained using a scanning electron microscope equipped with a cyclic loading stage; measurements are quantified using a relatively new stereoimaging technique. Combining experimental results with analytical predictions suggests that both plastic wake and residual stress mechanism are operative, the latter becoming predominate as R increases

    Analysis of small crack behavior for airframe applications

    Get PDF
    The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted

    Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA

    Get PDF
    Quantifying forest structure is important for sustainable forest management, as it relates to a wide variety of ecosystem processes and services. Lidar data have proven particularly useful for measuring or estimating a suite of forest structural attributes such as canopy height, basal area, and LAI. However, the potential of this technology to characterize forest succession remains largely untested. The objective of this study was to evaluate the use of lidar data for characterizing forest successional stages across a structurally diverse, mixed-species forest in Northern Idaho. We used a variety of lidar-derived metrics in conjunction with an algorithmic modeling procedure (Random Forests) to classify six stages of three-dimensional forest development and achieved an overall accuracy \u3e95%. The algorithmic model presented herein developed ecologically meaningful classifications based upon lidar metrics quantifying mean vegetation height and canopy cover, among others. This study highlights the utility of lidar data for accurately classifying forest succession in complex, mixed coniferous forests; but further research should be conducted to classify forest successional stages across different forests types. The techniques presented herein can be easily applied to other areas. Furthermore, the final classification map represents a significant advancement for forest succession modeling and wildlife habitat assessment

    Models for logics and conditional constraints in automated proofs of termination

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13770-4_3Reasoning about termination of declarative programs, which are described by means of a computational logic, requires the definition of appropriate abstractions as semantic models of the logic, and also handling the conditional constraints which are often obtained. The formal treatment of such constraints in automated proofs, often using numeric interpretations and (arithmetic) constraint solving can greatly benefit from appropriate techniques to deal with the conditional (in)equations at stake. Existing results from linear algebra or real algebraic geometry are useful to deal with them but have received only scant attention to date. We investigate the definition and use of numeric models for logics and the resolution of linear and algebraic conditional constraints as unifying techniques for proving termination of declarative programs.Developed during a sabbatical year at UIUC. Supported by projects NSF CNS13-19109, MINECO TIN2010-21062-C02-02 and TIN2013-45732-C4-1-P, and GV BEST/2014/026 and PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2014). Models for logics and conditional constraints in automated proofs of termination. En Artificial Intelligence and Symbolic Computation. Springer Verlag (Germany). 9-20. https://doi.org/10.1007/978-3-319-13770-4_3S920Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using Matrix Interpretations over the Reals in Proofs of Termination. In: Proc. of PROLE 2009, pp. 255–264 (2009)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. of Aut. Reas. 34(4), 325–363 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. J. of Aut. Reas. 40(2-3), 195–220 (2008)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal Termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 110–125. Springer, Heidelberg (2008)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific (1998)Hudak, P., Peyton-Jones, S.J., Wadler, P.: Report on the Functional Programming Language Haskell: a non–strict, purely functional language. Sigplan Notices 27(5), 1–164 (1992)Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Information Processing Letters 95, 446–453 (2005)Lucas, S., Meseguer, J.: Proving Operational Termination of Declarative Programs in General Logics. In: Proc. of PPDP 2014, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: 2D Dependency Pairs for Proving Operational Termination of CTRSs. In: Proc. of WRLA 2014. LNCS, vol. 8663 (to appear, 2014)Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP Framework for CTRSs. In: Selected papers of LOPSTR 2014. LNCS (to appear, 2015)Meseguer, J.: General Logics. In: Ebbinghaus, H.-D., et al. (eds.) Logic Colloquium 1987, pp. 275–329. North-Holland (1989)Nguyen, M.T., de Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination of logic programs. Theory and Practice of Logic Programming 11(1), 33–63 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (April 2002)Prestel, A., Delzell, C.N.: Positive Polynomials. In: From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)Zantema, H.: Termination of Context-Sensitive Rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997

    Head butting sheep: Kink Collisions in the Presence of False Vacua

    Get PDF
    We investigate numerically kink collisions in a 1+1 dimensional scalar field theory with multiple vacua. The domain wall model we are interested in involves two scalar fields and a potential term built from an asymmetric double well and (double) sine-Gordon potential together with an interaction term. Depending on the initial kink setup and impact velocities, the model allows for a wide range of scattering behaviours. Kinks can repel each other, annihilate, form true or false domain walls and reflect off each other

    Extracting ecological and biophysical information from AVHRR optical data: An integrated algorithm based on inverse modeling

    Get PDF
    Satellite remote sensing provides the only means of directly observing the entire surface of the Earth at regular spatial and temporal intervals

    Interaction Properties of the Periodic and Step-like Solutions of the Double-Sine-Gordon Equation

    Full text link
    The periodic and step-like solutions of the double-Sine-Gordon equation are investigated, with different initial conditions and for various values of the potential parameter ϵ\epsilon. We plot energy and force diagrams, as functions of the inter-soliton distance for such solutions. This allows us to consider our system as an interacting many-body system in 1+1 dimension. We therefore plot state diagrams (pressure vs. average density) for step-like as well as periodic solutions. Step-like solutions are shown to behave similarly to their counterparts in the Sine-Gordon system. However, periodic solutions show a fundamentally different behavior as the parameter ϵ\epsilon is increased. We show that two distinct phases of periodic solutions exist which exhibit manifestly different behavior. Response functions for these phases are shown to behave differently, joining at an apparent phase transition point.Comment: 17pages, 15 figure

    Lake Breezes in Southern Ontario and Their Relation to Tornado Climatology

    Get PDF
    Geostationary Operational Environmental Satellite (GOES) imagery is used to demonstrate the development of lake-breeze boundaries in southern Ontario under different synoptic conditions. The orientation of the gradient wind with respect to the shorelines is important in determining the location of such lines. When moderate winds (5–10 m s21) are parallel to straight sections of coastlines, cloud lines can extend well inland. In the region between Lakes Huron and Erie lake-breeze lines merge frequently, sometimes resulting in long-lasting stationary storms and attendant heavy rain and flooding. The influence of the lakes is apparent in the tornado climatology for the region: tornadoes appear to be suppressed in regions visited by lake-modified air and enhanced in regions favored by lake-breeze convergence lines. The cloud patterns in the case of a cold front interacting with merging lake-breeze boundaries are shown to be similar to those on a major tornado outbreak day. Two of the cases discussed are used as conceptual models to explain many of the features in the patterns of tornado touchdown locations. In general, it appears that the lakes suppress tornadoes in southern Ontario, compared with neighboring states and in particular in areas where southwest winds are onshore, but enhance tornado likelihood locally in areas of frequent lake-breeze activity. 1
    • …
    corecore